关于大数据时代的读后感的文字专题页,提供各类与大数据时代的读后感相关的句子数据。我们整理了与大数据时代的读后感相关的大量文字资料,以各种维度呈现供您参考。如果大数据时代的读后感未能满足您的需求,请善用搜索找到更适合的句子语录。
3月11日下午两节课后,我校全体教师和受邀而来的金南学区各友好学校的领导及教师汇聚于多媒体教室,共同分享、交流。
老师们从:何谓大数据;立足国情对大数据进行探讨;大数据在教育教学中的主要应用等几个方面畅谈了自己的感悟。
张萌老师说:大数据体量庞大、结构复杂、是产生巨大价值的数据集合。大数据这种方法在*的国情下需要以更加科学、合适的方式进行实践,不可生搬硬套。
董译雯老师说:在你我感叹《大数据》里深植于美国民众血液中的自由、民主、严谨的价值观的同时,可否想过*教育体制下的孩子们身上还残留多少独立与自我意识?作为典型的八零后,我们这一代人身上最缺失的便是独立思考能力。但愿,我的学生哪怕是因为我所做的一点点努力而开始思考“我”这个字的含义,足矣!
张红杰老师说:很感谢校长给我们推荐了《大数据》这本书。在教学工作中,应该有大数据意识,创新意识。学*一些专业的教学统计法、数据分析法,从中发现一些教育现象,并采取相应的策略。让我们的教育教学工作少一些随意和盲目,多一份严谨与科学。
白媛媛老师通过文中的三个事例,结合教学实际,谈了自己教学中对数据使用的价值;结合自己的工作,谈了如何实现工作的最高境界。
交流活动尾声,身为阅读《大数据》的倡议者、发起者、以及忠实的读者韩校长幽默风趣的同大家分享了他读后的感悟:我们心中要装着学校,因为我们个人的命运依赖群体的命运;工作要追求精细化,不能做胡适书中的“差不多”先生;尊重数据,拥有数据意识,建立数据团队!
此次活动从寒假期间倡导读《大数据》一书,到开学伊始的分组沙龙,再到今日的阅读共享,现已圆满告一段落。相信此次活动定会增强我校全体教师的数据意识,掌握大数据,运用大智慧助推我校的教育教学上一个新的台阶!
读完《大数据》,我才意识到这并不是一本枯燥无味的书籍。作者运用案例和讲故事的方式,把美国数据开放、收集、使用背后的立法故事、公民故事、技术故事、商业故事娓娓道来,引人入胜,令我大开眼界。
我在想,大数据概念对于教育来说会产生什么样的实用价值呢?一直以来,*教育在研究教育的数字化,比如数字化校园,这个思路就是把我们教育的内容进行数字化,其结果指向的就是电子教材的研发或者是教学过程的数字化。美其名曰,这是教育技术的重要内涵。在教学过程中,学生的行为表现都可以被数据化,而这项研究不是任何一个专业可以深入下去的,它的'专业性太强,所以我才会想到,所谓教育技术与其研究教育的数字化,不如研究教育的数据化来得实在,来的有意义。长期以来,我们并不了解教育对一个人的影响具体会如何表现,我们有的只是一个轮廓,我们也并不确定一个教师的行为对学生具体产生了哪些影响。所以,人们对教育一直有一个深深的质疑,它是不是科学的?大数据概念至少提出了关注“是什么”比“为什么”要有实际意义得多。而我们的教育恰好需要把注意力从“为什么”转移到“是什么”上面来,只有如此,才能把教育从为什么发展成“可能成为什么”上来,这会是一次思想上的革命。而对于现在地位岌岌可危的教育技术来说,把研究的重点从数字化转移到数据化上面,这才是它的出路。
如何将数据融入教学,教育者首先通过标准化全科教学处方,实现了教师授课模板和教学内容的标准化,保证每个教学过程和内容是可控的,然后结合每天的教学内容,处理好面对的数据,处理好数据,自然也就处理好了课堂的反馈,最终形成了既注重教学体验又以教学结果为导向的教学体系。
与此同时,不仅要注重课上的学生资源,在课后还要对这些资源进行跟踪处理。这与过去的教育教学显然是不同的,面对大数据时代的到来,教学有所改变是必然的。所以,无论环境怎么变换,数据如何复杂,我们都不能不去改变自己的`教学去迎合将来的这个大数据时代。
世界的本质就是数据,当你掌握了数据,你便掌控了世界—你可以轻而易举地通过数据中的相关关系预测事物的发展,将一切不利因素扼杀于摇篮之中—这远胜于"防患于未然"。
《大数据时代》一书,让我们在观念上有了三大转变:要全体不要抽样,要效率不要绝对精确,要相关不要因果。全书介绍了 "大数据"时代三种大的变革:思维变革,商业变革和管理变革。在这些巨大变革如洪水一般的"冲击"之下,现代社会的运作方式必将有重大的改变,若不顺应这种变革的潮流,就像古*固步自封,最终被坚船利炮打开国门而自己还用着长钩铁戟抗争一样,不可避免被掠夺,被落于世界进程之后,所以我们必须转变我们的思想。
"我们不再热衷于寻找因果关系,而应该寻找事物间的相关关系",我想这句话是本书的核心思想。大数据时代,信息与数据已成为了一切的本源,我们生活在各种数据构成的海洋之中,如果从另一种视角看,就好像无数条"看不见的线"将我们与这些数据联系到一起,这是我们以前从未有过、从未想过的。大数据改变了我们以前的通过因果关系了解世界的方法,而提供了几种新的途径,因为,在大数据时代,我们可以分析更多数据,有时甚至可以处理和某个特别现象相关的所有数据,也就是:样本=总体;而且,当研究数据如此之多时,我们已不热衷于"精确",而是"混乱",若不接受"混乱",那么有95%的非结构化数据无法利用,这将无法使我们构建完整的数据世界,在分析更多、更全面的数据之后,我们就可以从这些数据之中发掘它们的相关关系,即以"是什么"而不是"为什么"的角度看待数据,不用管其从何而来,只要分析其如何影响其他事物既可,即"让数据自己发声",这些,彻底推翻了人类以前探索数据的方法,展现了一个全新的世界。
这种观念以惊人的力量给现知识状况带来了巨大的冲击,通过对海量数据的分析,获得巨大价值的产品和服务,或深刻的洞见。比如谷歌公司,2009年H1N1流行之时,通过检测检索词条,处理34。5亿个不同的数据模型,通过预测并与2007、2008年的美国疾控中心记录的实际流感病例进行对比后,确定了45条检索词条组合,并将其用于一个特定的数学模型后,预测结果与官方数据相关系数高达97%,这种大数据技术,以前所未有的方式,通过海量数据分析得出流感所传播的范围,为预测流感提供了一种更快速、高效的工具。
同时,虽然大数据可为人类造福、对抗病症,但这仅限于掌握这门技术而言,若不重视这种技术,当我们的对手早于我们一步构建这种数据网络之时,便是我们的灾难,想想,大数据虽核心的在于预测,当敌人通过这种手段预测我方下一步的行动,将是可怕的—比如你的导弹将从何处发射,将飞往哪,你的军队动向、目标,总之所有一切"未来"将掌控于敌手,敌方甚至可以借此发现那些将来有"大作为"的人,从而进行渗透或扼杀,这对我们的发展无疑是致命的,所以,尽快加速大数据系统的构建进程是必须的。
对于我们国防生,也必须顺应这种发展趋势,未来的时代必将是数据极易获取,数据网络共享化的时代,通过这些数据,建立数据模型,可以准确分析并给出适合每一个人的计划,如运动量、训练强度,可以"先知、先觉",及时发现一个人的负面情绪前及时疏导,这些必将成为现实,我们必须跟进时代,做好准备,去应对大数据时代的一切!
去年的“云计算”炒得热火朝天的,今年的“大数据”又突袭而来。仿佛一夜间,各厂商都纷纷改旗换帜,推起“大数据”来了。于是乎,各企业的CIO也将热度纷纷转向关注“大数据”来了。有一张来自《程序员》微博的漫画很形象。我觉得这张图,很真实地反映了现实中小企业云计算,大数据的现状。
不过话又还得说回来,《大数据时代》是本好书。
当然,很多IT知名人士也大力推荐,写了好多读后感来表述对这本书的喜欢没看此书之前,对所谓大数据的概念基本上是一头雾水,虽则有了解关注过现在也比较火热的BI,觉得也差不多,可能就是更多的数据,更细致的数据分析与数据挖掘。看过此书后,感觉到之前的想法,只能算是中了一小半吧———巨量的数据,而另一前:着眼于数据关联性,而非数据精确性,或许才是大数据与现时BI的不同,不仅仅是方法,更多的时思想方法。不过坦白讲,到底是数据的关联性重佳,还是数据的精确性更好,还真的需要时间来检验一下,至少从现在的数据分析方法来论,更多的倾向于数据的精确性。
看完此书,我心中的一些问题:
1、什么是大数据?
查了查百度百科,是这样定义的:大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的.的资讯。大数据的4V特点:Volume、Velocity、Variety、Veracity这个好像是IBM的定义吧。
以个人的观点来看:数据海量,存储海量都是大数据的基本原型吧。
2、大数据适合什么样的企业?
诚然,大数据的前提是海量的数据,只有拥有巨量的数据资源,方能从中查找出数据的关联性,才可以让通过专业化的处理,让其为企业产生价值。针对电信运营,互联网应用这样海量用户的数据的大企业,也是在应用大数据的道路上拥有得天独厚的条件,但是针对中小企业呢?销售订单数据?若非百年老店,估计数据也是少得可怜,能用的可能只有消费者数据了吧。貌似大多数厂商,用来举例的也就是消费都购买行为分析为最多。
同样,在公共事业类的*机构,大数据的作用也许也能很好的发挥。反而感觉在大多数中小型企业应用大数据,似乎有点大题小作。书中说:大数据是企业竞争力。诚然,数据是一个企业的核心无形资源(利用得好的话),但是否所有的数据,或都换则方式说:所有的企业都以大数据为竞争力,是否真的合适么?是否在中小企业中,会显示得小题大做呢?
3、大数据带来的影响
当一波又一波的IT技术热潮源源不断地向我们铺面而来的时候,你甚至都没有做好准备,你都要开始迎接它所给你带来的影响了。经过物联网,云计算的推波助澜下,大数据开始登场了。但它到底给我们带来了什么呢?
1)预测未来书中以Google成功预测了未来可能发生流感的案例来开篇,表明通过大数据的应用,可以为我们的生活起一个保驾护航的指向标。实质很简单,技术改变世界。
2)变革商业大数据所带来的商机,同时会衍生出一系列与大数据相关的商业机遇与商业模式,数据的潜在价值会源源不断地发挥作用可以容易想到的是未来有专门的数据收集,数据分析,数据生成的一条数据产业链产生。影响的,当然是IT公司
3)变革思维书中所说:因为有海量的数据作基础,未来,我们可能更关注数据的相关,而非精细度。对这条,本人还是持保留意见的。
读完《大数据时代》这本书后,我意识到:我们即将或正在迎接由书面到电子的跳跃之后的又一重大变革。
这本书介绍了大数据时代来临后,接踵而至的三项变革——商业变革、管理变革和思维变革。
其实,这场变革已经打响。商业领域由于大数据时代的到来而推陈出新。前几年,一家名为Farecast的公司,让预订到更优惠的机票价格不再是梦想。公司利用航班售票的数据来预测未来机票价格的走势。现在,使用这种工具的乘客,*均每张机票可以省大约50美元,这就是大数据给人们带来的便利。
大家应该都知道2009年出现的H1N1型流感,就拿美国为例,疾控中心每周只进行一次数据统计,而病人一般都是难以忍受病痛的折磨才会去医院就诊,因此也导致了信息的滞后。然而,对于飞速传播的疾病,Google公司却能及时地作出判断,确定流感爆发的地点,这便是基于庞大的数据资源,可见大数据时代对公共卫生也产生了重大的影响!
在我看来,如果想在在大数据时代里畅游,不仅要学会分析,而且还要能够大胆地决断。
在美国,每到七、八月份时,正是台风肆虐之时,防涝用品也摆上了商品货架。沃尔玛公司注意到,每到这时,一种蛋挞的销售量较其他月份明显增加。于是,商家作了大胆的`推测,出现这样的结果源于两种物品的相关性,便将这种蛋挞摆在了防涝用品的旁边。这样的举措大大增加了利润,这就是属于世界头号零售商的大数据头脑!
大数据时代的到来,可以让我们的生活更加便利。但是,如果让大数据主宰一切,也存在一定的风险。
大家应该都知道电子地图,它可以为人们指引方向。但大家应该还不知道,它会默默地积累人们的行程数据,通过智能分析可以推断出哪里是自己的家,哪里是工作单位。我们的隐私就这样被不为人知地收集着。
大数据时代的到来,让我们的生活更安全,更方便,但与此同时,我们的隐私不再是隐私,数据的收集变得无所不包、无孔不入。世界已经向大数据时代迈进了一小步,一个崭新的时代正向我们走来。让我们用知识武装大脑,做好准备,迎接新时代的到来!
去年的“云计算”炒得热火朝天的,今年的“大数据”又突袭而来。仿佛一夜间,各厂商都纷纷改旗换帜,推起“大数据”来了。于是乎,各企业的CIO也将热度纷纷转向关注“大数据”来了。有一张来自《程序员》微博的漫画很形象。我觉得这张图,很真实地反映了现实中小企业云计算,大数据的现状。
不过话又还得说回来,《大数据时代》是本好书。
当然,很多IT知名人士也大力推荐,写了好多读后感来表述对这本书的喜欢没看此书之前,对所谓大数据的概念基本上是一头雾水,虽则有了解关注过现在也比较火热的BI,觉得也差不多,可能就是更多的数据,更细致的数据分析与数据挖掘。看过此书后,感觉到之前的想法,只能算是中了一小半吧---巨量的数据,而另一前:着眼于数据关联性,而非数据精确性,或许才是大数据与现时BI的不同,不仅仅是方法,更多的时思想方法。不过坦白讲,到底是数据的关联性重佳,还是数据的精确性更好,还真的需要时间来检验一下,至少从现在的数据分析方法来论,更多的倾向于数据的精确性。
看完此书,我心中的一些问题:
1、什么是大数据?
查了查百度百科,是这样定义的:大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4V特点:Volume、Velocity、Variety、Veracity这个好像是IBM的定义吧。
以个人的观点来看:数据海量,存储海量都是大数据的基本原型吧。
2、大数据适合什么样的企业?
诚然,大数据的前提是海量的数据,只有拥有巨量的数据资源,方能从中查找出数据的关联性,才可以让通过专业化的处理,让其为企业产生价值。针对电信运营,互联网应用这样海量用户的数据的大企业,也是在应用大数据的道路上拥有得天独厚的条件,但是针对中小企业呢?销售订单数据?若非百年老店,估计数据也是少得可怜,能用的可能只有消费者数据了吧。貌似大多数厂商,用来举例的也就是消费都购买行为分析为最多。
同样,在公共事业类的*机构,大数据的作用也许也能很好的发挥。反而感觉在大多数中小型企业应用大数据,似乎有点大题小作。书中说:大数据是企业竞争力。诚然,数据是一个企业的核心无形资源(利用得好的话),但是否所有的数据,或都换则方式说:所有的企业都以大数据为竞争力,是否真的合适么?是否在中小企业中,会显示得小题大做呢?
3、大数据带来的影响
当一波又一波的IT技术热潮源源不断地向我们铺面而来的时候,你甚至都没有做好准备,你都要开始迎接它所给你带来的影响了。经过物联网,云计算的推波助澜下,大数据开始登场了。但它到底给我们带来了什么呢?
1)预测未来书中以Google成功预测了未来可能发生流感的案例来开篇,表明通过大数据的应用,可以为我们的生活起一个保驾护航的指向标。实质很简单,技术改变世界。
2)变革商业大数据所带来的商机,同时会衍生出一系列与大数据相关的商业机遇与商业模式,数据的潜在价值会源源不断地发挥作用可以容易想到的是未来有专门的数据收集,数据分析,数据生成的一条数据产业链产生。影响的,当然是IT公司
3)变革思维书中所说:因为有海量的数据作基础,未来,我们可能更关注数据的相关,而非精细度。对这条,本人还是持保留意见的。
书中虽只是阐述了大数据带来的信息风暴正在变革我们的生活、工作和思维,大数据开启了一次重大的时代转型,并未提及会对我们教育教学产生什么影响,但在这样的大环境之中,我们同样可以获得启示,寻求大数据在教育工作中可实现的价值。
1、教师角度:从基于经验到基于数据的教学转型
“经验主义”是指形而上学的思想方法和工作作风,其特点是在观察和处理问题的时候,从狭隘的个人经验出发,不是采用联系、发展、全面的观点,而是采取鼓励、精致、片面的观点。在教学中,我们有时会凭借以往经验认定本节课学生的起点,从而制定教学目标、重难点以及教学过程。这往往忽略了上届学生和这届学生是有差异的,这班学生和另一班学生也是存在差异的,那如何准确把握学生的起点呢?我想可以借助前测数据,它可以为有效教学指明了方向。
如教学“复式统计表”时,前期查找资料的时候就发现早在一年级上册P96的时候学生就见过复式统计表,意让学生初步认识统计表,渗透统计思想。而二三年级的书中练*也多有涉及,就是这种复式统计表没有“表头”,生活中的复式统计表也很多。既然在以前练*时碰到这么多次复式统计表,学生对复式统计表到底认识多少呢?我们对157名学生进行这样的调查(如下图),第1题:像上表这样的统计表以前见过吗?见过约占65%,没见过约占35%,学生在练*中碰到过、生活中也经常看见,但还是约35%的学生回答自己没见过,说明学生*时在看这个复式统计表的时候就浮于表面,所以这节课我们重点应该让学生经历复式统计表的产生过程,加深学生对复式统计表的印象。第2题:上表中的16表示什么意思?能完整表达出二班身高在130~139厘米的学生有16人,约占41%;表达一半,如二班16人,或130~139厘米16人,约占22%,其他约占37%,真正能正确读懂复式统计表的学生一半不到,需要在课中进行读图方法的指导。而知道这个表叫做复式统计表的学生不到20%。
基于这样的前测数据,我们将原先的教学设计进行修改,制定出符合这样学情的教学目标、教学重难点和教学流程,以实现“以生为本”的课堂。同样练*课和复*课,也可以借助本班学生的错题数据,准备适合这个班学生情况的教学设计。
2、学生角度:建立数据分析观念
未来肯定是“大数据时代”,那我们的学生作为未来的主人,在小学时应该掌握什么样能力呢?我想数据分析观念必不可少,2011年修订的《义务教育数学课程标准》(以下简称《课标》)把过去核心词里的“统计观念”,改成“数据分析观念”,就是希望身为老师的我们知道,数据分析是很重要的,并且希望教学能够构建适当的背景,让学生感受到数据分析是很重要的。那到底要让学生掌握数据分析观念的什么知识呢?
史宁中教授的《大数据与小学数学教育》这篇文章就阐述很清楚,他在文章中提到,结合大数据的主题,回想在“数据分析观念”中提到的三件事情是非常重要的。
第一件事情,感悟数据中蕴含的信息。要让孩子们知道,所有的道理不一定都是老师教的,不一定都是父母说的,也不一定是书本上说的,有一些信息,有一些道理是通过数据知道的。这个叫做数学的“实事求是”。有些东西是要经过思考的,根据什么来思考呢?根据事实思考,然后得出自己的结论。这样,孩子就可能会想问题,就可能会发现问题,提出问题,分析问题,解决问题。
第二件事情,知道数据中的信息可以用不同的办法获取。数据中的信息不像纯数学那样,只能靠一个办法得到。世界上绝对真理是不存在的,很多事情是相对的,相对的意思就是同样的数据,用不同的方法分析会得到不同的结论。因此它取决于这个人的判断准则,取决于他的价值观。什么样的办法好呢?大家讨论叫做民主,或者是最符合背景的方法就是一个好办法。这个是判断准则,也可以自己定。这个事情得从小开始重视,应该让孩子们知道,有些标准是老师定的,但是有些标准你也可以定。
第三件事情,感悟数据是随机的。可能这次取得的数据是这样的,下一次取得的数据是那样的。虽然是随机的,但是只要你取得相当多的数据之后,就能发现其中的规律性。
以上是读了这本书之后又找了一些相关文章阅读后,一些凌乱、零碎的想法,有些想法还得细细思考如何落实到自己的实际教学中,*期也一直在整理《基于作业中错题数据改进数学练*课的教学研究》的课题成果,通过对班级学生作业中错题数据的统计分析,从而发现其中典型错误、易错题等等,帮助教师确定练*课的重难点,就不会像书里的练*板块那样流水账式地复*,以此更有效地针对班级学情设计练*课教学,提高了练*课的效率;另一方面,也可以利用这些数据,知道各层次学生的错误点,分析原因,从而设计出针对不同层次学生的作业练*,让不同的学生能在作业中得到不同的发展,避免学生一直重复做已经掌握的题。
世界的本质就是数据,当你掌握了数据,你便掌控了世界—你可以轻而易举地通过数据中的相关关系预测事物的发展,将一切不利因素扼杀于摇篮之中—这远胜于"防患于未然"。
《大数据时代》一书,让我们在观念上有了三大转变:要全体不要抽样,要效率不要绝对精确,要相关不要因果。全书介绍了"大数据"时代三种大的变革:思维变革,商业变革和管理变革。在这些巨大变革如洪水一般的"冲击"之下,现代社会的运作方式必将有重大的改变,若不顺应这种变革的潮流,就像古*固步自封,最终被坚船利炮打开国门而自己还用着长钩铁戟抗争一样,不可避免被掠夺,被落于世界进程之后,所以我们必须转变我们的思想。
"我们不再热衷于寻找因果关系,而应该寻找事物间的相关关系",我想这句话是本书的核心思想。大数据时代,信息与数据已成为了一切的本源,我们生活在各种数据构成的海洋之中,如果从另一种视角看,就好像无数条"看不见的线"将我们与这些数据联系到一起,这是我们以前从未有过、从未想过的。大数据改变了我们以前的通过因果关系了解世界的方法,而提供了几种新的途径,因为,在大数据时代,我们可以分析更多数据,有时甚至可以处理和某个特别现象相关的所有数据,也就是:样本=总体;而且,当研究数据如此之多时,我们已不热衷于"精确",而是"混乱",若不接受"混乱",那么有95%的非结构化数据无法利用,这将无法使我们构建完整的数据世界,在分析更多、更全面的数据之后,我们就可以从这些数据之中发掘它们的相关关系,即以"是什么"而不是"为什么"的角度看待数据,不用管其从何而来,只要分析其如何影响其他事物既可,即"让数据自己发声",这些,彻底推翻了人类以前探索数据的方法,展现了一个全新的世界。
这种观念以惊人的力量给现知识状况带来了巨大的冲击,通过对海量数据的分析,获得巨大价值的产品和服务,或深刻的洞见。比如谷歌公司,2009年流感流行之时,通过检测检索词条,处理34.5亿个不同的数据模型,通过预测并与2007、2008年的美国疾控中心记录的实际流感病例进行对比后,确定了45条检索词条组合,并将其用于一个特定的数学模型后,预测结果与官方数据相关系数高达97%,这种大数据技术,以前所未有的方式,通过海量数据分析得出流感所传播的范围,为预测流感提供了一种更快速、高效的工具。
同时,虽然大数据可为人类造福、对抗病症,但这仅限于掌握这门技术而言,若不重视这种技术,当我们的对手早于我们一步构建这种数据网络之时,便是我们的灾难,想想,大数据虽核心的在于预测,当敌人通过这种手段预测我方下一步的行动,将是可怕的—比如你的导弹将从何处发射,将飞往哪,你的军队动向、目标,总之所有一切"未来"将掌控于敌手,敌方甚至可以借此发现那些将来有"大作为"的人,从而进行渗透或扼杀,这对我们的发展无疑是致命的,所以,尽快加速大数据系统的构建进程是必须的。
对于我们国防生,也必须顺应这种发展趋势,未来的时代必将是数据极易获取,数据网络共享化的时代,通过这些数据,建立数据模型,可以准确分析并给出适合每一个人的计划,如运动量、训练强度,可以"先知、先觉",及时发现一个人的负面情绪前及时疏导,这些必将成为现实,我们必须跟进时代,做好准备,去应对大数据时代的一切!
《大数据时代》是英国维克托·迈尔-舍恩伯格教授的著作,这本书也被尊为国外大数据研究的先河之作。这本书最大的优点就在于作者利用上百个例子来对大数据的方方面面做了详细解说,让外行也很容易理解。结构上,作者通过大数据时代的思维变革、商业变革和管理变革三个角度依次阐述,条理清晰。
所谓"大数据",按作者的说法,就是"所有数据"。随着计算机运算速度和存储能力的发展,收集数据变得越来越简单,储存数据的成本越来越低。在过去,由于技术限制,人们做统计时只能收集有限的数据做样本,其中要考虑随机样本的选择,努力减小因样本问题出现的误差;统计结果往往不能重复使用,造成数据利用率低。而现在则可以做到"样本=总体"。数据的增多带来不可避免的精确性问题。 "小数据"时代,一个样本的错误就可以造成对总体估计的失败,幸运的是,"大数据"时代对精确性不再那么要求苛刻——也无法要求太严格——数据的数量足以弥补这一缺陷。在对思维变革这一部分的阐述中,最重要也是全书的核心观点就是大数据时代,我们应该从追求"因果关系"的旧思维方式向追求"相关关系"转变。 在我看来,这实际上是通过大数据来透视一种事物的发展趋势,而很多精确学科领域依然需要探寻"因果关系"解决更有针对性的问题,所以,这局限了这一转变只能在特定的领域发生。作者自己也说,"大数据的相关性将人们指向了比探讨因果关系更有前景的领域。"
大数据时代的数据获取方式是多种多样,数据形式也是千变万化,任何文字、行为、万物都可以被数据化后用来分析。对这些数据的利用,不仅要考虑到其初次使用价值,更要放眼它未来可能的用途以提高数据的利用率。当然数据并不是无限使用,时效、环境的变化肯定会对数据提出新的要求,所以数据的折旧也是应当考虑的。这又引出了对数据这一无形资产的估值可能性。对于Facebook, Twitter这样的公司来说,数据就是他们的核心,如何在资产负债表上给他们一个公正的体现正是我们需要考虑的。
大数据时代的价值链由三部分构成,我把它们简化为"生产—分析—使用"三个环节,这对应书中的三种类型公司: 第一种是基于数据本身的公司,第二种是基于技能,第三种则是基于思维。在大数据早期,技能和思维最有价值,但作者认为,最终,大部分的价值还是必须从数据本身来挖掘。这是假定了一个成熟的市场,人人都了解了大数据的用途。
对于普通人来说,大数据时代最关心的还是隐私问题。不知不觉中,个人的一举一动都暴露在*甚至私人企业之下,还面临潜在的泄露风险。对此,作者提出了使用者承担责任的解决办法,而不是过去那种流于形式的使用授权。大数据甚至能预测一个人的犯罪动机,这给监管者带来的难题是,预测一个人要犯罪,惩罚还是不惩罚?在这点上,社会达成"个人仅需对行为而非动机负责"的共识非常重要。
大数据时代的风险控制靠的是"算法师",类似会计师一样的职业,对大数据的准确度或有效性进行鉴定。这能在一定程度上防止数据滥用的发生和数据独裁。当今的法律亦需对大数据监管进行修订补充。
当代大数据发展主要由科技公司推动,相信在不久的将来更多的传统领域会意识到大数据的重要性。但我们也应该保持清醒,大数据并不是万能药,对某些领域或环节,使用大数据是一种简单且实用的选择;但对某些领域,盲目使用大数据只会适得其反。
信息时代的到来,我们感受到的是技术变化日新月异,随之而来的是生活方式的转变我们这样评论着的信息时代已经变为曾经。如今,大数据时代成为炙手可热的话题。笔者在这说明信息和数据,只是试图首先说明信息、数据的关系和不同,也试图说明,为什么信息时代转变为了大数据时代?大数据时代带给了我们什么?
信息和数据的定义。*解释:信息,又称资讯,是一个高度概括抽象概念,是一个发展中的动态范畴,是进行互相交换的内容和名称,信息的界定没有统一的定义,但是信息具备客观、动态、传递、共享、经济等特性却是大家的共识。数据:或称资料,指描述事物的符号记录,是可定义为意义的实体,它涉及到事物的存在形式。它是关于事件之一组离散且客观的事实描述,是构成信息和知识的原始材料。数据可分为模拟数据和数字数据两大类。数据指计算机加工的“原料”,如图形、声音、文字、数、字符和符号等。从定义看来,数据是原始的处女地,需要耕耘。信息则是已经处理过的可以传播的资讯。信息时代依赖于数据的爆发,只是当数据爆发到无法驾驭的状态,大数据时代应运而生。这是否是《大数据时代》一书所未曾阐述的背景材料?
在《大数据时代》一书中,大数据时代与小数据时代的区别:
1、思维惯例。大数据时代区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。作者语言绝对,却反思其本质区别。数据的更多、更杂,导致应用主意只能尽量观察,而不是倾其所有进行推理?这也是明智之举。
2、使用用途。小数据停留在说明过去,大数据用驱动过去来预测未来。笔者认为数据的用途意在何为,与数据本身无关,而与数据的解读者有关,而相关关系更有利于预测未来。
3、结构。大数据更多的体现在海量非结构化数据本身与处理方法的整合。大数据更像是理论与现实齐头并进,理论来创立处理非结构化数据的方法,处理结果与未来进行验证。
4、分析基础。大数据是在互联网背景下数据从量变到质变的过程。笔者认为,小数据时代也即是信息时代,是大数据时代的前提,大数据时代是升华和进化,本质是相辅相成,而并非相离互斥。
数据未来的故事。数据的发展,给我们带来什么预期和启示?银行业天然有大数据的潜质。客户数据、交易数据、管理数据等海量数据不断增长,海量机遇和挑战也随之而来,适应变革,适者生存。我们可以有更广阔的业务发展空间、可以有更精准的决策判断能力、可以有更优秀的经营管理能力可以这些都基于数据的收集、整理、驾驭、分析能力,基于脱颖而出的创新思维和执行。因此,建设“数据仓库”,培养“数据思维”,养成“数据治理”,创造“数据融合”,实现“数据应用”才能拥抱“大数据”时代,从数据中攫取价值,笑看风云变换,稳健赢取未来。
我主要读了第一部分和第三部分。
第一部分是大数据的思维变革,作者舍恩伯格提出了三个观点,一是"不是随机样本,而是全体数据",二是"不是精确性,而是混杂性",三是"不是因果关系,而是相关关系",作者被誉为"大数据时代的预言家",抛出的观点是掷地有声的,下面我将谈谈我对这三点的理解。
对于一,我们必须承认我们以往做的处理抽样数据得到结果的方法,是省时省力省钱的,而且判断结果是相对高精准的,如人口普查这一案例,如果采用全体数据进行统计分析的话,工作难度是相当大的,最后的结果也不会很满意,这是得不偿失的。但是随着数据处理技术的飞速发展,我们已经具备了处理大量数据的能力,如果在数据分析过程中采用全体数据,就能避免抽样数据可能由于选取偏见带来的非随机性,处理全体数据也必将成为一种趋势。用在国防生管理工作中,就是管理层要对每个个体都给予充分的关心与互动,对于优秀的固然要偏爱,但是对于较差的也要保持"不抛弃不放弃"的态度,让每一个个体都找到自己的定位与价值。
对于二,作者强调通过掌握更多的数据,暂时牺牲精确性,关注更多容易被忽略的细节,来做更多的事,得到更多的结果,也就是说我们要有一定的包容错误的能力。我们在收集数据时,要主动获取更多的数据,少加一些限制性条件,然后应用我们处理大数据的能力,或许会获得意想不到的结果。作者举了一个谷歌翻译系统的例子,通过英语作为中转,进行各语言之间的转换。此处的启发就是用我们最擅长的途径,不拘泥于特定规则,来达到我们的目的,也就是说我们要先认清自己,不去刻意的模仿,找出最适合自己的一套方法。
对于三,作者指出知道"是什么"就够了,没必要知道"为什么",乍一看这个观点觉得有点无脑,但是结合第二点就合理了,降低对精确性及原因结果的要求,通过对相关数据的广泛分析,进而得到更丰富更多元的结果。如购物时,系统的购物推荐,并不是肯定你会购买,仅仅是你感兴趣进而可能会买就足够了。其实作者对"相关关系"的强调,主要是大数据强大的预测能力,而且这种预测性能还是相当精确的。以上只是我用作者的观点佐证他自己的观点,证明其一定的合理性,但是我是不完全认同的,在航天领域,我们对成功率的要求是极高的,尤其是载人航天领域,我们必须做到万无一失,我们对每一个结果都会深究其根,找出原因。对于国防生体能成绩的分析也是如此,结果只是我们的一个评价机制,而最重要的还是产生这一结果的原因及过程。
第三部分是大数据的管理变革,本来以为作者会讲点如何通过大数据来改革管理机制和提高管理效率,没想到作者只是讲了大数据其实就是我们的隐私的暴露,提出了要让数据采集管理公司对数据的使用负起责任的解决途径。个人感觉,一是我们在*时要意识到个人隐私的保护,而是相关法律政策的完善,真正的让大数据服务我们的工作生活,而不是一种变相的威胁。
这本书比我预想的可读性强多了……
深入简出,以简明扼要的概括性观点和国外各种著名的事例解释,让外行人一眼明白大数据时代是什么,做什么,对未来生活有何益处,有何副作用。
首先改变我的认知的是,大数据的特点不是大,而是全。一改传统的抽样数据属性(因为以前的计算机无法存储运算收集这么庞大的数据),用整体的数据形成了一个更宏观的上帝视角,进而发现更多意想不到的结论。
其二是分析的思路由因果关系发展到关联关系。因果关系容易理解,因为人们去医院检查出了感染病所以要对这个人隔离治疗,对周围的人隔离检查,这个地域可能是重要爆发点。然而关联关系则是更加意想不到,比如谷歌公司利用人们的搜索关键字预测出感染病的爆发,这便不是因果,不是搜索了流感就一定患了病,这只是有关联,只有当拿到全面的数据,关联性才能形成一个结论。
应该说,大数据的时代会带来新一波思想的冲击,不再是按部就班地推导式逻辑,而是由现象直接得出结论的跳跃式思维,以海量数据的比对和验证显示出的新的关联。
大数据时代的分析与预测会达到前所未有的准确和预见性,会让人们更容易得出最优解,选择不再变得那么纠结,广告更知道给什么人投,新闻更知道哪一类人爱看哪一个,地块更知道是需要住宅还是办公,区域更知道是适合作为经济现代化的中心还是环境优美宜居的景区。
然而,大数据时代带来的问题也令人细思极恐。
其一,最直观的就是隐私泄密问题。信息时代的今天,几乎没有人是脱离网络通信生存的。而我们的无数信息也无时无刻不在沿着网络线传输到看不见的地方。这是十分可怕的,因为你搜索到每个关键词,点击的每个页面、看过的每个图片甚至和别人交谈的每一句话都暴露在开发者眼中。这些信息被记录下来,联系起来就可以勾勒出一个完整的个人档案,可能比你自己填写的还要准确。如果只是作为记录还好,如果被别人,比如说你家附*的小偷利用这分析哪家有钱又经常不在家比较好偷…
其二,大数据分析通过分析人们的喜好选择,得出人们最偏爱的选项,对人们选择产生影响……如此其实会产生一层问题,人们会知道他们想知道的而还有很多他们应该知道的被过滤掉了。人们会越来越分裂越来越偏执以自我为中心。也就是说过度的迎合市场不见得会一直长盛不衰。
其三也是最最可怕的,和电影里动漫里的幻想那样,利用大数据对人是否有犯罪动机进行评判与预测…那么对数据预测的即将犯罪的人我们应不应该逮捕呢?说逮捕,其并未造成犯罪事实,说不逮捕,可能就无法阻止一场惨剧……
大数据带来冲击带来革命也带不安……但是就像法律上有律师来填补漏洞或者说为人们辩护,也许未来真的会有算法师成为大数据时代中新一代维护秩序的职业。
辩证地,准备迎接更加普及化的大数据时代吧。
我们已经在大数据里生活了好多年,而最*观看了《大数据时代》带给了我的是更多的思考。随着互联网的快速发展,特别是*年来,随着社交网络,物联网,云计算和各种传感器的广泛应用,具有大量,多样性和强时效性的非结构化数据不断涌现。数据存储和分析技术的重要性难以实时处理大量非结构化信息。大数据的概念应运而生。如何获取,汇总和分析大数据已成为广泛关注的热门问题。
对于普通企业而言,大数据的作用主要体现在两个方面,即数据的分析和使用以及二次开发项目。通过分析信息的大数据,不仅可以挖掘隐藏数据,还可以通过这些隐藏的消息,通过销售实体,增强其客户来源。至于数据的二次开发,它用于网络服务项目。通过总结和分析这些信息,我们可以开发出满足客户需求的个性化解决方案,并创造一种新的广告和营销方式。
同时作为一名人力资源工作者,我也在想人力资源管理因为大数据而获得价值提升的可能,但也有可能在大数据的海洋中迷失方向。伴随着业务发展要求及劳动力的变迁,人力资源管理从最初行政事务性的人事管理,到聚焦资源使用效率的人力资源管理,再到目前追求有竞争力投资回报的人力资本管理,管理内容不断丰富,管理模式不断创新,其价值也不断得到提升。
过去,人力资源管理没有太多数据的支撑,决策常常依靠直觉、经验和个人偏好。大数据时代的来临,让人力资本用数量的方式来进行投资分析和管理成为可能。但未来的挑战不是数据缺乏,而是如何有效地选取和利用数据,而不会在数据的海洋中迷失了方向。
2012年,麦肯锡提出了“大数据时代”的说法,用最通俗的说法来说,就是这个世界的各行各业,将会出现海量信息,即“信息爆炸时代”。而这些信息,都是由各种数据组成,通过收集、整理、分析、研究这些数据,就能找到对自己有利的方法。夸张一点说,掌握了大数据,就掌握了未来。时代的步伐进入了2019年,许多企业都在谈“大数据时代”,都在研究如何与时俱进,将“大数据”与数据分析融入到企业管理中去,为自己带来创新性的优势。归根到底,大数据时代下企业人力资源管理的创新,还是通过数据化信息的动态收集和梳理,对企业人力资源的不同模块进行分析,从而达到全面提升人力资源管理水*的目的。
书中虽只是阐述了大数据带来的信息风暴正在变革我们的生活、工作和思维,大数据开启了一次重大的时代转型,并未提及会对我们教育教学产生什么影响,但在这样的大环境之中,我们同样可以获得启示,寻求大数据在教育工作中可实现的价值。
1、教师角度:从基于经验到基于数据的教学转型
“经验主义”是指形而上学的思想方法和工作作风,其特点是在观察和处理问题的时候,从狭隘的个人经验出发,不是采用联系、发展、全面的观点,而是采取鼓励、精致、片面的观点。在教学中,我们有时会凭借以往经验认定本节课学生的起点,从而制定教学目标、重难点以及教学过程。这往往忽略了上届学生和这届学生是有差异的,这班学生和另一班学生也是存在差异的,那如何准确把握学生的起点呢?我想可以借助前测数据,它可以为有效教学指明了方向。
如教学“复式统计表”时,前期查找资料的时候就发现早在一年级上册P96的时候学生就见过复式统计表,意让学生初步认识统计表,渗透统计思想。而二三年级的书中练*也多有涉及,就是这种复式统计表没有“表头”,生活中的复式统计表也很多。既然在以前练*时碰到这么多次复式统计表,学生对复式统计表到底认识多少呢?我们对157名学生进行这样的调查,第1题:像上表这样的统计表以前见过吗?见过约占65%,没见过约占35%,学生在练*中碰到过、生活中也经常看见,但还是约35%的学生回答自己没见过,说明学生*时在看这个复式统计表的时候就浮于表面,所以这节课我们重点应该让学生经历复式统计表的产生过程,加深学生对复式统计表的印象。第2题:上表中的16表示什么意思?能完整表达出二班身高在130~139厘米的学生有16人,约占41%;表达一半,如二班16人,或130~139厘米16人,约占22%,其他约占37%,真正能正确读懂复式统计表的学生一半不到,需要在课中进行读图方法的指导。而知道这个表叫做复式统计表的学生不到20%。
基于这样的前测数据,我们将原先的教学设计进行修改,制定出符合这样学情的教学目标、教学重难点和教学流程,以实现“以生为本”的课堂。同样练*课和复*课,也可以借助本班学生的错题数据,准备适合这个班学生情况的教学设计。
2、学生角度:建立数据分析观念
未来肯定是“大数据时代”,那我们的`学生作为未来的主人,在小学时应该掌握什么样能力呢?我想数据分析观念必不可少,2011年修订的《义务教育数学课程标准》(以下简称《课标》)把过去核心词里的“统计观念”,改成“数据分析观念”,就是希望身为老师的我们知道,数据分析是很重要的,并且希望教学能够构建适当的背景,让学生感受到数据分析是很重要的。那到底要让学生掌握数据分析观念的什么知识呢?
最*看了《大数据》一书,有一点感想,在这里和大家分享。
作者在后序中写 道,这不是一本纯粹谈技术的书,而是以技术背景探讨人和社会关系的书。今天的*,是一个人口大国、互联网大国、手机大国,却不是一个数据大国。书中有这 样一组调查数据——“麦肯锡公司以20xx年度各国新增的存储器为基准,对全世界大数据的分布做了一个研究和统计,*20xx年新增的数据量为250 拍,不及日本的400拍、欧洲的2000拍,和美国的3500拍相比更是连十分之一都没有达到。国内的大数据步伐急需加快。
一.他山之石,国外在干啥?
《大数据》一书对美国大数据的应用进行了十分详细的介绍与分析,我印象最深的为两点。
第一,以海量数据的处理作为政策制定的依据。看这本书的时候,我想到了这两年很火的一个美国人——斯诺登。在其曝光的“棱镜”计划中美*直接从包括微软、谷歌、雅虎、Facebook、AOL、Skype以及苹果在内的国际公司服务器收集信息。美国*从这些海量数据中寻找自己需要的数据,并以此作为所谓安全政策制定的依据之一。姑且不论媒体对此计划的口诛笔伐及相应的道德风险,仅从政策制定方面来说,依据于海量数据的政策制定科学性肯定比一般计划要高得多。
20xx年,雅虎 首*执行沃兹博士在《自然》上发表的《21世纪的科学》中提到,得益于计算机技术和海量数据库的发展,我们每个人在现实世界中的活动得到前所未有的记录, 这种记录也更为细致,为社会科学的定量分析提供了极为丰富的数据。打个比方,从你的QQ空间、微博、微信中一个普通朋友都能了解到你在哪儿、做了哪些事 情、现在的状态是什么,而新闻的跟帖、网站的下载记录、社交*台的互动记录等等都为社会行为的研究提供了大量的数据。我想到最*比较火爆的穿戴设备,如果 该技术得到普及过后,拥有穿戴设备的人群的生活轨迹、生理各项指标都能轻而易举地得到,相信这些大量的原始数据如能安全有效利用定能为卫生政策的制定提供 科学依据。
第二,万事万物, 凡存在,皆联网,凡联网,皆计算。20xx年起,美国食品与药品管理局开始在药品上推行配备RFID做法即每个食品包装上安装一个薄如纸张或小如豆粒的无 线传感器。通过这个移动传感器,对食品进行连续跟踪,一旦相应的安全事故爆发,就能通过数据库追踪溯源,快速确定传染源与影响范围。这一技术相对于国内尚 在起步阶段的食品追溯具有极强的借鉴性。上面提到的穿戴设备其实就可以视为一个穿戴在人身上的RFID。
20xx年的时 候,美国国家气象局在全国2000两客运大巴上装备了传感器,随着大巴的移动,沿途手机所有地点的温度、湿度、露水、光照度等数据,并立即传给国家气象局 数据中心。数据的采集是每10秒中一次,每天采集10万次以上的数据,这些实时的、高精度的数据意味着天气预报将不再仅仅是”预“,将逐渐走向“实”报、 “精”报。
二.我们该怎么办?
作者涂子沛在书里 引用胡适与黄仁宇的话。胡适说*人*惯于当“差不多先生”,凡是马马虎虎、不求精确。黄仁宇认为,*不懂得用数字来管理国家。作者引用这两位先生的名 言,当然是要彰显传统*和今天美国之间的差异。但是我们也必须认识到:这两位先生身经当时*的混乱,激愤而出此言。在大数据浪潮迅猛而来的时候,* 与100年前已经完全不一样了,我们已经有足够的能力与自信来面对各项挑战。20xx年*开始着手制定医疗系统的最小数据集,3年之后*出台了第一 版*医院最小数据集的标准。也是在20xx年,*创立了第一个全国性的大型社会调查项目,开始对社会的发展和变迁进行全方位、综合性、纵贯性的问卷访 谈调查,即“杨文昊在KOD里面穿的裤子”。可以看到,**和企业已经投入到了大数据时代的浪潮之中了。我个人也有几点应对的想法。
一是鼓励、扶持基 于数据的创新创业。书中提到,政策扶持的传统方法,可能是以*主导建立大数据产业园,对新兴企业提供办公场所等便利条件或者现金支持,这固然有效,但更 为有效的是调动全社会的力量。调动全社会的力量来支持可以包括扶植民间团体,快速推进新技术、新理念在全社会的传播。现在云技术大众基本上都耳熟能详了, 而这主要是各大互联网服务上都相继推出了相应的云服务以及各大媒体对这项技术的关注,促进了大众对新技术的了解与支持。
二是*机构要建 立专门机构来统筹管理数据工作。在大数据时代不同的数据需要整合,*、消防、民政、社保等等数据都需要进行联动,将沉睡在数据库内的数据唤醒,为*制 定政策所用,避免各自为政、多头管理的情况发生。数据的联通也能在一定程度上减少群众的“办证”问题,相信在大数据时代,大家可能只需要一张身份卡就能满 足绝大部分的数据需要。
三是围绕个人数据安全,加强管理。任何技术都是双刃剑,耍得好可以披荆斩棘,耍得不好则会害人伤己,大数据也不列外。如何保障个人隐私也成为了大数据时代面临的一个重大挑战。
有人说生活像一团乱麻,剪不断理还乱;我说生活像一团乱码,尽管云山雾罩惝恍迷离,最后却总会拨云见日雨过天晴。维克托迈尔舍恩伯格就把这团乱码叫做大数据,在他的这本书里,试图给出的就是拨开云雾见青天的玄机。
这玄机说来也简单,就是放弃千百年来人们孜孜追求的因果关系转而投奔相关关系。说来简单,其实却颠覆了多少代人对真理探求的梦想。我觉得作者是个典型的实用主义者,在美帝国主义万恶的压迫下,始终追逐性价比和利益最大化,居然放弃了追求*真理最基本的要求!不像我们在天朝光芒的笼罩下,从小就开始学*和追求纯粹的*唯心科学历史文化知识啦!这或许就是我们永远无法获得诺贝尔奖、永远无法站在科技最前沿的根本原因吧。其实小学时候,我就想过这个问题,相信所有的人都问过类似的问题,例如现在仍然很多人在问,妈的从来没人知道我每天摆摊赚多少钱,你们他妈的那人均收入四五千是怎么算出来的。*是抽样的代表,因为*人最喜欢用代表来表现整体,最典型的例子莫过于公布的幸福指数满意指数各种指数永远都高于你的预期,你完全不清楚他是怎么来的,一直到最后汇总成*,真心不清楚它到底能代表了啥。说这么多显得自己是个愤青,其实只是想表达“样本=总体”这个概念在科技飞速发展的今天,在世界的不同角落,还是会体现出不同的价值,受到不同程度的对待及关注。在大数据观念的冲击下,我们是不是真的需要将*时关注的重点从事物内在的发展规律转移到事物客观的发生情况上。
大数据的出现,必然对诸多领域产生极大的冲击,某些行业在未来十年必将会得到突飞猛进的发展,而其他一些行业则可能会消失。这是废话,典型的三十年河东三十年河西的道理,就像三十年前的数理化王子们,现在可能蜷缩在某工厂的小角落里颤颤巍巍的修理机器;就像三十年前职业高中的学生才学财会学银行,如今这帮孙子一个个都开大奔养小三攒的楼房够给自己做墓群的了;当然也不乏像生物这种专业,三十年前人们不知道是干啥的,三十年后人们都知道没事别去干,唯一可惜的是我在这三十年之间的历史长河中却恰恰选了这么一个专业,这也是为什么我现在在这写读后感而没有跟姑娘去玩耍的原因。其实乍一看这个题目,我首先想到的是精益生产的过程控制,比如六西格玛,这其实就是通过对所有数据的分析来预测产品品质的变化,就已经是大数据的具体应用了。而任何事物都会有偏差,会有错误,也就是说,这全部的数据中,肯定是要出现很多与总体反应出的规律相违背的个体,但是无论如何这也是该事件中一般规律的客观体现的一种形式,要远远好过从选定的样本中剔除异常值然后得到的结论。换句话说,也大大减少了排除异己对表达事物客观规律的影响。就好比是统计局统计*人民的*均收入一样,这些数怎么这么低啊,这不是给我们国家在国际社会上的形象抹黑么,删掉删掉;这些数怎么这么高啊,这还不引起社会不满国家动荡啊,删掉删掉。所以说,大数据至少对反应客观事实和对客观事实做预测这两个方面是有非常积极地意义的。而这个新兴行业所体现的商机,既在如何利用数据上,又在如何取得数据上。
先说数据的利用,这里面表达的就是作者在通书中强调的对“相关关系”的挖掘利用。相关关系与因果关系便不再赘述,而能够对相关关系进行挖掘利用的企业其实缺不多,因为可以相信未来的大数据库就像现在的自然资源一样,必将因为对利益的追逐成为稀缺资源,而最终落在个别人或企业或部门的手中。想想无论当你想要做什么事情的时候,都有人已经提前知道并且为你做好了计划,还真是一件甜蜜而又令人不寒而栗的事情。
而对于数据的获取,我觉得必然是未来中小型企业甚至个人发挥极致的创造力的领域。如何在尽可能降低成本的情况下采集到越多越准确的数据是必然的发展趋势,鉴于这三个维度事实上都无法做到极致,那么对于数据获取方式的争夺肯定将成就更多的英雄人物。
现在回头从说说作者书中的观点中想到的,P87中关于巴斯德的疫苗的事件,描述了一个被疯狗咬伤的小孩,在接种了巴斯德的狂犬疫苗后成功幸存,巴斯德成了英雄的故事。这是个非常有意思的案例,因为小孩被狗咬伤而患病的概率仅为七分之一,也就是说,本事件有85%的概率是小孩根本就不会患病。那么小孩的生命到底是不是巴斯德救的,而这疫苗到底是有效没效,通过这个事件似乎根本就没有办法得到验证。这就好比某人推出个四万亿计划,但实际上国际经济形势就是好转,哪怕你只推出个二百五计划,GDP都会蹭蹭的往上涨,而且又不会带来四万亿导致的严重通胀、产能过剩、房价泡沫等问题。那你说这四万亿到底是救了国还是误了国?回到我自己的工作领域上来,安全工作,我们一直遵循的方向都是寻找因果关系,典型的从工作前的`风险评估,到调查事故的Taproot或者五个为什么,无一不是逻辑推理得到结果的产物。而事实上,如果能做到信息的丰富采集和汇总的话,找出事物之间的相关性,对提高工作环境的安全系数是极为有利的。这个点留着,看看可不可以在未来继续做进一步研究。
P89说了常用的两种因果推理方式,分别是凭直觉的快速推理和经过分析的慢速推理。有意思的是很多时候直觉反而比分析来得成功率要更高。作者是想利用这个例子来说明因果关系是多么的不可靠,也想表达出靠分析试验得到结果的过程成本有多高。其实我是想说,因果关系更多面向的是未来,是没有对新鲜事物发展做出的预测,而相关关系更多的是对已经存在的事物未来发展的预测,侧重点不同而已。
P108里面指出颅相学是伪科学,既然你相关关系研究的本来就是看起来不相关的两件事之间的联系,那么测测脑袋大小和智力高低之间的联系,只要我积累足够的数据,怎么就不能是大数据,就成了伪科学了呢?
P135里面关于山上小球的描述,它的能量是隐藏的、潜在的。这个观点我很喜欢,也很悲观。这正说明了社会上的一种现象。很多人,虽然没有站在巨人的肩膀上,但是当他们站在亲爹干爹的路虎上保险箱上高背椅上时,就是拥有别人无法企及的力量。最*一直在背马丁老兄的I have a dream,真真切切体会到自由、公正、*等对一个社会,一个国家繁荣发展的重要性。实干兴邦、空谈误国,那就先从建立一个公*的社会秩序开始吧!
P163里面大概讲述了商家是怎么通过大数据获得的信息来进行商业推广的。这里我只想用我的三张信用卡发卡银行做一下比较。首先是交通银行,这张卡最*半年几乎没怎么用,交行也从来都无声无息,我考虑已经可以把这张卡扔掉了;去年因为国航里程申请了一张中信的信用卡,但是今年开始也已基本停用,因为之前一段时间一直使用,中信银行这几个月频繁与我联系,推荐各种业务,多次要给我提供贷款或者提高透支额度,我几次都想要不然就换回来继续用它好了;招商银行的卡也是我用得比较久的一张,*期每月的消费基本都稳定在几千,偶尔也有一万多快两万的时候,当然这不是因为我消费,只是因为出差比较多自己垫钱多而已,但是招商银行从未与我联系给我提升额度,尽管我的月消费额度都已经基本达到信用卡的上限了,有时候甚至不得不使用别家的信用卡。最差的自然是中行,首先是预约了国航金卡的信用卡,结果联系了两次我都在出差,就再也不与我联系了,半年多了我还没有拿到我的卡,而作为工资卡的借记卡,多年来仍然是每天网上付款最多2000,我的使用记录明明经常一个月有好几天都达到2000的顶值,甚至我都主动打过电话要求更改,都给我答复是必须到柜*理。说完这几个例子,我想*的银行业与欧美发达国家银行的差距就已经是显而易见了。真的很难以想象这种企业能在世界500强中排名那么靠前,是因为黑了*人民多少钱。而通过对VISA和MasterCard的案例描述,则清晰的说明了一个成功的银行是怎么通过对数据收集进行行为预测,最终改变消费者消费*惯的。
然后想说说关于免费导航等应用的使用。天下没有免费的午餐,这是亘古不变的真理。你以为你可以只花点流量费就能舒服方便的使用卫星导航了么,你去过的每一个地方,时间,逗留市场都已经被人家记录下来卖给商家啦,哪天你打车找到一家麦当劳,刚停下车服务员就送上一套板烧鸡腿汉堡套餐可乐换阳光橙不加冰的时候你可千万不要惊讶,因为你已经无时无刻不暴露在别人的监视之下了。
最后想用文中引用的莎士比亚的一句话作为结尾,凡是过去,皆为序曲。
如今说起新媒体和互联网,必提大数据,似乎不这样说就OUT了。而且人云亦云的居多,不少谈论者甚至还没有认真读过这方面的经典著作——舍恩佰格的《大数据时代》。维克托·迈尔——舍恩伯格何许人也?他现任牛津大学网络学院互联网研究所治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人。他的咨询客户包括微软、惠普和IBM等全球顶级企业,他是欧盟互联网官方政策背后真正的制定者和参与者,他还先后担任多国*高层的智囊。这位被誉为:大数据时代的预言家“的牛津教授真牛!那么,这位大师说的都是金科玉律吗?并不一定,读大师的作品一定要做些功课才好读懂,如果能做足功课又具备相应的理论功底,就能与之进行一场思想上的对话。
舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。在第一部分”大数据时代的思维变革“中,舍恩伯格旗帜鲜明的亮出他的三个观点:一、更多:不是随机样本,而是全体数据;二、更杂:不是精确性,而是混杂性;三、更好:不是因果关系,而是相关关系。对于第一个观点,我不敢苟同。一方面是对全体数据进行处理,在技术和设备上有相当高的难度。另一方面是不是都有此必要,对于简单事实进行判断的数据分析难道也要采集全体数据吗?我曾与香港城市大学的祝建华教授讨论过。祝教授是传播学研究方法和数据分析的专家,他认为一定可以找到一种数理统计方法来进行分析,并不一定需要全部数据。联系到舍恩伯格第二个观点中所说的相关关系,我理解他说的全体数据不是指数量而是指范围,即大数据的随机样本不限于目标数据,还包括目标以外的所有数据。我认为大数据分析不能排除随机抽样,只是抽样的方法和范围要加以拓展。
我同意舍恩伯格的第二观点,我认为这是对他第一个观点很好的补充,这也是对精准传播和精准营销的一种反思。”大数据的简单算法比小数据的复杂算法更有效。“更具有宏观视野和东方哲学思维。对于舍恩伯格的第三个观点,我也不能完全赞同。”不是因果关系,而是相关关系。“不需要知道”为什么“,只需要知道”是什么“。传播即数据,数据即关系。在小数据时代人们只关心因果关系,对相关关系认识不足,大数据时代相关关系举足轻重,如何强调都不为过,但不应该完全排斥它。大数据从何而来?为何而用?如果我们完全忽略因果关系,不知道大数据产生的前因后果,也就消解了大数据的人文价值。如今不少学者为了阐述和传播其观点往往语出惊人,对旧有观念进行彻底的否定。
世间万物的复杂性多样化并非非此即彼那么简单,舍恩伯格也是这种二元对立的幼稚思维吗?其实不然,读者在阅读时一定要看清楚他是在什么语境下说的,不要因囫囵吞枣的浅读而陷入断章取义的误读。比如说舍恩伯格在提出”不是因果关系,而是相关关系。“这一论断时,他在书中还说道:”在大多数情况下,一旦我们完成了对大数据的相关关系分析,而又不再满足于仅仅知道‘是什么’时,我们就会继续向更深层次研究的因果关系,找出背后的‘为什么’。“[i]由此可见,他说的全体数据和相关关系都在特定语境下的,是在数据挖掘中的选项。
大数据研究的一大驱动力就是商用,舍恩伯格在第二部分里讨论了大数据时代的商业变革。舍恩伯格认为数据化就是一切皆可”量化“,大数据的定量分析有力地回答”是什么“这一问题,但仍然无法完全回答”为什么“。因此,我认为并不能排除定性分析和质化研究。数据创新可以创造价值,这是毫无疑问的。舍恩伯格在讨论大数据的角色定位时仍把它置于数据应用的商业系统中,而没有把它置于整个社会系统里,但他在第二部分大数据时代的管理变革中讨论了这个问题。在风险社会中信息安全问题日趋凸显,数据独裁与隐私保护成为一对矛盾。如何摆脱大数据的困境?舍恩伯格在最后一节”掌控“中试图回答,但基本上属于老生常谈。我想,或许凯文·凯利的《失控》可以帮助我们解答这个问题?至少可以提供更多的思考维度。正如舍恩伯格在结语中所道:”大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的未来。“谢谢舍恩伯格!让大数据讨论从自然科学回到人文社科。由此推断,《大数据时代》不是最终答案,也不是标准答案,只是参考答案。
此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。
我们不再热衷于寻找因果关系,而应该寻找事物之间的相关关系。这个命题是我读这本书最大的感触。个人认为也是这本书最核心的思想。从头说起吧,首先,书提出一个颠覆我以前认知的命题--”并非原子而是信息才是一切的本源“,将世界看做信息,看做可以理解的数据的海洋,为我们提供了一个从未有过的审视下是的视角。它是一种可以渗透到所有生活领域的世界观。这个命题是在书的最后一部分中的某一段中描写的。我之所以把它放在最前面来讲,因为我觉得,这是谈数据化世界的前提,自然也是谈论大数据的前提啦。书的中间部分有一节讲到数据化和数字化的区别。经过我自己脑子的整理,把数据化世界这个命题列为大数据思维的第二步。写到这里,我不由得反省下,我是不是有领悟到书的精髓所在(我认为的精髓),就是第一句话。因为回顾我整个思路,还是按照旧模式的因果关系思考模式思考问题。书中另一个吸引我的地方就是,有很多观点的论述,会从哲学的高度论述。虽然,自己肚子没多少墨水,但是读这些描述的时候,就会发现自己会更好的理解作者提出的命题。比如书中有一段文字
当我们说人类是通过因果关系了解世界时,我们指的是我们再理解和解释世界各种现象时使用的两种基本方法:一种是通过快速、虚幻的因果关系,还有一种就是通过缓慢、有条不紊的因果关系。大数据会改变这两种基本方法在我们认识世界时所扮演的角色。
在附上一些事例的时候,用作者提供的”本质“去看待时,很容易理解,确实是这么回事。好了,那么大数据到底改变了我们什么呢,作者给出3点,
大数据的精髓在于我们分析信息时的三个转变,这些转变讲改变我们理解和组建社会的方法。
第一个转变就是,在大数据时代,我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机采样(样本=总体)
第二个转变就是,研究数据如此之多,以至于我们不再热衷于追求精确度
第三个转变因前两个转变而促成,即我们不再热衷于寻找因果关系,而应该寻找事物之间的相关关系。大数据告诉我们”是什么“而不是”为什么“。在大数据时代,我们不必知道现象背后的原因,我们只要让数据自己发声。,出处:短美文,否则追究其责任,谢谢你的支持,我们会给做得更好!
正如大家所知道的那样,人类的大脑具备这样的功能,它会把新输入的刺激或信息与”过去的经验或积累的部分知识“相对照,然后进行调整并接受下来。如果眼前新的现实与大脑中储存的固有信息无法协调,便会在无意识中拒绝接受新的现实(当作没有看见);或者通过自己一知半解的知识任意推测,使自己认识到的情况偏离实际(产生错觉)。这是人的一种本能,目的在于使自己保持冷静。
所以作者称之为revolution。
讲了这么多,那么大数据到底给我们带来什么。在这里,我只想谈我感触最深的,其他的有兴趣的可以自己去了解。当然,书中提了很多,最多的就是,XXX公司或者个人利用大数据创造了多大的财富了,抛开这些表面的不说,最让我动心亦或者是害怕的是,预测。这是大数据带来最核心的东西,动心的理由无须赘述,计算机会告诉你什么时候买什么双色球可以中头奖,想想心里是不是有一点小激动咧。当然这只是我打的一个比较夸张的比喻。至于害怕呢,书中有段话我很喜欢
公*正义的基础是人只有做了某事才需要对它负责,毕竟,想做而未做不是犯罪,社会关系于个人责任的基本信条是,人为其选择的行为承担责任。如果大数据分析完全准确,那么我们的未来会被精准的预测,因此在未来,我们不仅会失去选择的权利,而且会按照预测去行动。如果精准的预测成为现实的话,我们也就失去了自由意志,失去了自由选择的权利。既然我们别无选择,那么我们也就不需要承担责任。这不是很讽刺吗。
扯到这里,顺便扯一下,书中另一段关于自由意志的描述
在哲学界,关于因果关系是否存在的争论已经持续了几个世纪。毕竟,如果凡事皆有因果的话,那么我们就没有决定任何事的自由了。如果说我们做的每一个决定或者每一个想法都是其他事情的结果。而这个结果又是由其他原因导致的。以此循环往复,那么就不存在人的自由意志这一说了。——所有的生命轨迹都只是受因果关系的控制了。因此,对于因果关系在世间所扮演的角色,哲学家们争论不休,有时他们认为,这是与自由意志相对立。
书中举了个例子,举了部电影《少数派报告》,当我看到这里的时候,”哎哟,我居然看过这部电影,想想心里还是有点小激动“,有兴趣的可以去看下,大概就是讲警察通过预测来提前抓捕犯人,不过不是通过大数据,是通过超人类的方式。当你什么举动都可以被预测,相当于你完全暴露在太阳光下,换成你,你害怕不。
最后,附上两段结语,一段是书中的一段话,另一段是我自己瞎编的。
大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的未来。
大数据终将会影响到我们,也像其他技术一样会是一把双刃剑,用得好,动心,滥用,害怕。如同核技术一样,用的话,造福地球,滥用,给个金刚石地球你,照样爆。我相信,未来的大数据的发展会如作者所说的,是一场生活、工作与思维的革命。
“大数据”一词不知何时在我们的生活悄然出现,为了一探究竟,我便选择了《大数据时代》一书。
作者先从全局简单地描述大数据对我们的生活、工作与思维的影响,再从三方面具体地用上百个学术和商业的实例展开写作。样本=总体、追求精确性和相关关系等大数据时代具体特点一一现出。在同时,作者也从个人、企业等多角度分析大数据中的隐忧。
书中内容繁多,在此不能各方面概括。此书中虽有许多专有名词,但作者以其通俗的语言以及许多实例让我嗅到大数据时代中一抹清新之气。
为什么是清新的呢?因为书中的内容仿佛向我打开了一个既有点熟悉又有点陌生的世界。我们现在已处于网络时代 ,在我们日常简单的操作中大量数据产生,然而起初我们仅用众多技术在解决手头上的问题,那些大数据像沙子中的金子,价值不被发现。到目前,每当我们网上购书时总会看到“猜你喜欢”的栏目、出现谷歌搜索与流感预测、Farecast与飞机票价预测系统等,这些事情的达成全来自于那些曾被忽略的大数据同时也在证明“预测,大数据的核心”这句话,为我们的生活创造了前所未有的可量化的维度。看到书中这部分内容时,我不禁感受到自己的生活已在享大数据带来的福利,就像“猜你喜欢”栏目让我触到更多合我口味的书,让我看到了以前无法发现的细节。拥有大量数据的公司巨头如谷歌、亚马逊大力开发有关大数据的新型产业和研究相关项目。借网络时代的便利大数据成为了如今最有商业价值的事物,使一切可量化的趋势也开始出现。“本质上世界是由信息构成的”,面对这句话时,大数据时代仿佛就在眼前。
在感受惊叹着大数据能为我们做到以往无法想象的事和它巨大的价值时,我认同大数据能极大优化我们的生活,但又不禁为这时代感到担忧。一旦大数据时代来临,不仅我们的隐私可能不再是隐私,就如书中所言“我们时刻暴露在‘第三只眼’下:亚马逊监视着我们的购物*惯,谷歌监视着我们的购物*惯,而微博似乎什么都知道”,而且利用大数据我们可以预测许多事情并且十分高效,一旦人们依赖大数据极少运用人类自身的创新等能力被数据束缚住,世界只会沦落为一个极少活力的机械环境。而我认为最大的忧患,是大数据时代对人类自身思维、思想、信仰等精神领域的冲击。如今我们都生活在数据中,大数据时代说不定在几年后就会逐步来临,这使我不禁发问:我们一直坚信着信仰着的究竟是什么?我觉得世界说变就变实在令我想不通这个问题。事情都有好坏,我也不知道自己是否杞人忧天。
于是我继续去探索作者对这问题的思考。“更大的数据在于人本身”,作者还说“我们是在创造更好的未来”,也说“在一个预测的时代里,人类的.自由意志不可侵犯,这一点不可轻视。我们在使用大数据时,应当怀有谦恭之心,铭记人性之本”。人类学家克利福德吉尔兹曾说:“努力在可以应用、可以拓展的地方,应用它、拓展它;在不能应用、不能拓展的地方,就停下来。”这些话语仿佛是阳光,驱散我心中对大数据时代的担忧以及内心对其的恐惧。我认为,在坚守我们内心和自由意志下,大数据才会造福我们人类世界,发挥出它背后对人温暖的光芒。
面对时代的变革,我会为坚守内心深处的自由意志而努力并“拥抱大数据”。
*两周用业余时间读了《大数据时代》这本书,是听培训时杜威老师推荐的,我快速阅读了一遍,觉得受到了一些启发,发现了一些原来没有想到看到的事情。
首先是大数据代表着数据的样本=全体,这是一个与传统统计学的显著区别。大数据有能力获得全体数据并对其进行分析。
第二就是相关性与因果性同样重要。相关性说明了什么事情与什么什么事情有关系,如商场周围车流量的增多与商场销售额的相关性,因果性说明什么是什么的原因,如睡10个小时是有精神的原因。在大数据中,相关性要比因果性容易获得,而且相关性已经能为客户带来较大的收益。
第三就是大数据允许存在不精确性、混杂性,由于数据量巨大,存在少量的异变不会对结果产生任何影响,如收益是1个亿与1亿零1元的差别可能决策者不关心。
第四是大数据中的三个主要因素,思维、数据、技术,思维觉得你在哪些地方使用大数据。在这三个因素之中,会产生数据中间商,来处理加工数据并出售。
世界的本质就是数据,当你掌握了数据,你便掌控了世界—你可以轻而易举地通过数据中的相关关系预测事物的发展,将一切不利因素扼杀于摇篮之中—这远胜于"防患于未然"。
《大数据时代》一书,让我们在观念上有了三大转变:要全体不要抽样,要效率不要绝对精确,要相关不要因果。全书介绍了"大数据"时代三种大的变革:思维变革,商业变革和管理变革。在这些巨大变革如洪水一般的"冲击"之下,现代社会的运作方式必将有重大的改变,若不顺应这种变革的潮流,就像古*固步自封,最终被坚船利炮打开国门而自己还用着长钩铁戟抗争一样,不可避免被掠夺,被落于世界进程之后,所以我们必须转变我们的思想。
"我们不再热衷于寻找因果关系,而应该寻找事物间的相关关系",我想这句话是本书的核心思想。大数据时代,信息与数据已成为了一切的本源,我们生活在各种数据构成的海洋之中,如果从另一种视角看,就好像无数条"看不见的线"将我们与这些数据联系到一起,这是我们以前从未有过、从未想过的。大数据改变了我们以前的通过因果关系了解世界的方法,而提供了几种新的途径,因为,在大数据时代,我们可以分析更多数据,有时甚至可以处理和某个特别现象相关的所有数据,也就是:样本=总体;而且,当研究数据如此之多时,我们已不热衷于"精确",而是"混乱",若不接受"混乱",那么有95%的非结构化数据无法利用,这将无法使我们构建完整的数据世界,在分析更多、更全面的数据之后,我们就可以从这些数据之中发掘它们的相关关系,即以"是什么"而不是"为什么"的角度看待数据,不用管其从何而来,只要分析其如何影响其他事物既可,即"让数据自己发声",这些,彻底推翻了人类以前探索数据的方法,展现了一个全新的世界。
这种观念以惊人的力量给现知识状况带来了巨大的冲击,通过对海量数据的分析,获得巨大价值的产品和服务,或深刻的洞见。比如谷歌公司,2009年流感流行之时,通过检测检索词条,处理34.5亿个不同的数据模型,通过预测并与2007、2008年的美国疾控中心记录的实际流感病例进行对比后,确定了45条检索词条组合,并将其用于一个特定的数学模型后,预测结果与官方数据相关系数高达97%,这种大数据技术,以前所未有的方式,通过海量数据分析得出流感所传播的范围,为预测流感提供了一种更快速、高效的工具。
同时,虽然大数据可为人类造福、对抗病症,但这仅限于掌握这门技术而言,若不重视这种技术,当我们的对手早于我们一步构建这种数据网络之时,便是我们的灾难,想想,大数据虽核心的在于预测,当敌人通过这种手段预测我方下一步的行动,将是可怕的—比如你的导弹将从何处发射,将飞往哪,你的军队动向、目标,总之所有一切"未来"将掌控于敌手,敌方甚至可以借此发现那些将来有"大作为"的人,从而进行渗透或扼杀,这对我们的发展无疑是致命的,所以,尽快加速大数据系统的构建进程是必须的。
对于我们国防生,也必须顺应这种发展趋势,未来的时代必将是数据极易获取,数据网络共享化的时代,通过这些数据,建立数据模型,可以准确分析并给出适合每一个人的计划,如运动量、训练强度,可以"先知、先觉",及时发现一个人的负面情绪前及时疏导,这些必将成为现实,我们必须跟进时代,做好准备,去应对大数据时代的一切!
这本书里主要介绍的是大数据在现代商业运作上的应用,以及它对现代商业运作的影响。
《大数据时代》这本书的结构框架遵从了学术性书籍的普遍方式。也既,从现象入手,继而通过对现象的解剖提出对这一现象的解释。然后在通过解释在对未来进行预测,并对未来可能出现的问题提出自己看法与对策。
下面来重点介绍《大数据时代》这本书的主要内容。
《大数据时代》开篇就讲了Google通过人们在搜索引擎上搜索关键字留下的数据提前成功的预测了美国的H1N1的爆发地与传播方向以及可能的潜在患者的事情。Google的预测比*提前将*一个月,相比之下*只能够在流感爆发一两个周之后才可以弄到相关的数据。同时Google的预测与*数据的相关性高达97%,这也就意味着Google预测数据的置信区间为3%,这个数字远远小于传统统计学上的常规置信区间5%!而这个数字就是大数据时代预测结果的相对准确性与事件的可预测性的最好证明!通过这一事以及其他的案例,维克托提出了在大数据时代“样本=总体”的思想。我们都知道当样本无限趋*于总体的时候,通过计算得到的描述性数据将无限的趋*于事件本身的性质。而之前采取的“样本<总体”的做法很大程度上无法做到更进一步的描述事物,因为之前的时代数据的获取与存储处理本身有很大的难度只导致人们采取抽样的方式来测量事物。而互联网终端与计算机的出现使数据的获取、存储与处理难度大大降低,因而相对准确性更高的“样本=总体”的测算方式将成为大数据时代的主流,同时大数据时代本身也是建立在大批量数据的存储与处理的基础之上的。
接下来,维克多又通过了IBM追求高精确性的电脑翻译计划的失败与Google只是将所有出现过的相应的文字语句扫描并储存在词库中,所以无论需要翻译什么,只要有联系Google词库就会出现翻译,虽然有的时候的翻译很无厘头,但是大多数时候还是正确的,所以Google的电脑翻译的计划的成功,表明大数据时代对准确性的追求并不是特别明显,但是相反大数据时代是建立在大数据的基础住上的,所以大数据时代追求的是全方位覆盖的数字测度而不管其准确性到底有多高,因为大量的数据会湮埋少数有问题的数据所带来的影响。同时大量的数据也会无限的逼*事物的原貌。
之后,维克托又预测了一个在大数据时代催生的重要职业——数据科学家,这是一群数学家、统计学与编程家的综合体,这一群人将能够从获取的数据中得到任何他们想要的结果。换言之,只要数据充足我们的一切外在的与内在的我们不想让他人知道的东西都见会在这一群家伙的面前展现得淋漓尽致。所以为了避免个人隐私在大数据时代被这一群人利用,维克托建议将这一群人分为两部分,一部分使用数据为商业部门服务,而另一群人则负责审查这一些人是否合法的获得与应用数据,是否侵犯了个人隐私。
无论如何,大数据时代将会到来,不管我们接受还是不接受!
我觉得《大数据时代》这本书写的很好,很值得一读。因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。不过,事实就是我们将会成为被预测被引诱的对象。所以说,小心你在网上留下的痕迹。
我喜欢这本书是因为它给我展现了一个新的世界。
《大数据时代》是英国维克托·迈尔-舍恩伯格教授的著作,这本书也被尊为国外大数据研究的先河之作。这本书最大的优点就在于作者利用上百个例子来对大数据的方方面面做了详细解说,让外行也很容易理解。结构上,作者通过大数据时代的思维变革、商业变革和管理变革三个角度依次阐述,条理清晰。
所谓"大数据",按作者的说法,就是"所有数据"。随着计算机运算速度和存储能力的发展,收集数据变得越来越简单,储存数据的成本越来越低。在过去,由于技术限制,人们做统计时只能收集有限的数据做样本,其中要考虑随机样本的选择,努力减小因样本问题出现的误差;统计结果往往不能重复使用,造成数据利用率低。而现在则可以做到"样本=总体"。数据的增多带来不可避免的精确性问题。 "小数据"时代,一个样本的错误就可以造成对总体估计的失败,幸运的是,"大数据"时代对精确性不再那么要求苛刻——也无法要求太严格——数据的数量足以弥补这一缺陷。在对思维变革这一部分的阐述中,最重要也是全书的核心观点就是大数据时代,我们应该从追求"因果关系"的旧思维方式向追求"相关关系"转变。 在我看来,这实际上是通过大数据来透视一种事物的发展趋势,而很多精确学科领域依然需要探寻"因果关系"解决更有针对性的问题,所以,这局限了这一转变只能在特定的领域发生。作者自己也说,"大数据的相关性将人们指向了比探讨因果关系更有前景的领域。"
大数据时代的数据获取方式是多种多样,数据形式也是千变万化,任何文字、行为、万物都可以被数据化后用来分析。对这些数据的利用,不仅要考虑到其初次使用价值,更要放眼它未来可能的用途以提高数据的利用率。当然数据并不是无限使用,时效、环境的变化肯定会对数据提出新的要求,所以数据的折旧也是应当考虑的。这又引出了对数据这一无形资产的估值可能性。对于Facebook, Twitter这样的公司来说,数据就是他们的核心,如何在资产负债表上给他们一个公正的体现正是我们需要考虑的。
大数据时代的价值链由三部分构成,我把它们简化为"生产—分析—使用"三个环节,这对应书中的三种类型公司: 第一种是基于数据本身的公司,第二种是基于技能,第三种则是基于思维。在大数据早期,技能和思维最有价值,但作者认为,最终,大部分的价值还是必须从数据本身来挖掘。这是假定了一个成熟的市场,人人都了解了大数据的用途。
对于普通人来说,大数据时代最关心的还是隐私问题。不知不觉中,个人的一举一动都暴露在*甚至私人企业之下,还面临潜在的泄露风险。对此,作者提出了使用者承担责任的解决办法,而不是过去那种流于形式的使用授权。大数据甚至能预测一个人的犯罪动机,这给监管者带来的难题是,预测一个人要犯罪,惩罚还是不惩罚?在这点上,社会达成"个人仅需对行为而非动机负责"的共识非常重要。
大数据时代的风险控制靠的是"算法师",类似会计师一样的职业,对大数据的准确度或有效性进行鉴定。这能在一定程度上防止数据滥用的发生和数据独裁。当今的法律亦需对大数据监管进行修订补充。
当代大数据发展主要由科技公司推动,相信在不久的将来更多的传统领域会意识到大数据的重要性。但我们也应该保持清醒,大数据并不是万能药,对某些领域或环节,使用大数据是一种简单且实用的选择;但对某些领域,盲目使用大数据只会适得其反。
我主要读了第一部分和第三部分。
第一部分是大数据的思维变革,作者舍恩伯格提出了三个观点,一是"不是随机样本,而是全体数据",二是"不是精确性,而是混杂性",三是"不是因果关系,而是相关关系",作者被誉为"大数据时代的预言家",抛出的观点是掷地有声的,下面我将谈谈我对这三点的理解。
对于一,我们必须承认我们以往做的处理抽样数据得到结果的方法,是省时省力省钱的,而且判断结果是相对高精准的,如人口普查这一案例,如果采用全体数据进行统计分析的话,工作难度是相当大的,最后的结果也不会很满意,这是得不偿失的。但是随着数据处理技术的飞速发展,我们已经具备了处理大量数据的能力,如果在数据分析过程中采用全体数据,就能避免抽样数据可能由于选取偏见带来的非随机性,处理全体数据也必将成为一种趋势。用在国防生管理工作中,就是管理层要对每个个体都给予充分的关心与互动,对于优秀的固然要偏爱,但是对于较差的也要保持"不抛弃不放弃"的态度,让每一个个体都找到自己的定位与价值。
对于二,作者强调通过掌握更多的数据,暂时牺牲精确性,关注更多容易被忽略的细节,来做更多的事,得到更多的结果,也就是说我们要有一定的包容错误的能力。我们在收集数据时,要主动获取更多的数据,少加一些限制性条件,然后应用我们处理大数据的能力,或许会获得意想不到的结果。作者举了一个谷歌翻译系统的例子,通过英语作为中转,进行各语言之间的转换。此处的启发就是用我们最擅长的途径,不拘泥于特定规则,来达到我们的目的,也就是说我们要先认清自己,不去刻意的模仿,找出最适合自己的一套方法。
对于三,作者指出知道"是什么"就够了,没必要知道"为什么",乍一看这个观点觉得有点无脑,但是结合第二点就合理了,降低对精确性及原因结果的要求,通过对相关数据的广泛分析,进而得到更丰富更多元的结果。如购物时,系统的购物推荐,并不是肯定你会购买,仅仅是你感兴趣进而可能会买就足够了。其实作者对"相关关系"的强调,主要是大数据强大的预测能力,而且这种预测性能还是相当精确的。以上只是我用作者的观点佐证他自己的观点,证明其一定的合理性,但是我是不完全认同的,在航天领域,我们对成功率的要求是极高的,尤其是载人航天领域,我们必须做到万无一失,我们对每一个结果都会深究其根,找出原因。对于国防生体能成绩的分析也是如此,结果只是我们的一个评价机制,而最重要的还是产生这一结果的原因及过程。
第三部分是大数据的管理变革,本来以为作者会讲点如何通过大数据来改革管理机制和提高管理效率,没想到作者只是讲了大数据其实就是我们的隐私的暴露,提出了要让数据采集管理公司对数据的使用负起责任的解决途径。个人感觉,一是我们在*时要意识到个人隐私的保护,而是相关法律政策的完善,真正的让大数据服务我们的工作生活,而不是一种变相的威胁。
《大数据时代》,作者是被誉为“大数据时代的预言家”维克托.迈尔-舍恩伯教授和肯尼思.库克耶。此书是在大数据方兴未艾、众说纷纭的时刻,进一步阐述和厘清大数据的基本概念和特点。
人类历史长河中,即使是在现代社会日新月异的发展中,人们还主要依赖抽样数据、局部数据和片面数据,甚至在无法获得实证数据的时候纯粹依赖经验、理论、假设和价值观去发现未知领域的规律。因此,人们对世界的认识往往是表面的、肤浅的、简单的、扭曲的或者是无知的。维克托指出,大数据时代的来临使人类第一次有机会和条件,在非常多的领域和非常深入的层次获得和使用全面数据、完整数据和系统数据,深入探索现实世界的规律,获取过去不可能获取的知识,得到过去无法企及的商机。
本书从思维变革、商业变革及管理变革三部分阐述大数据时代已经来临;列举了众多在公共卫生、商业服务领域大数据变革的例子。比如:在思维变革部分,以UPS与汽车修理预测为例,证明知道“是什么”就够了,没必要知道“为什么”;在大数据时代,我们不必非得知道现象背后的原因,而是要让大数据自己“发声”:UPS国际快递公司从2000年就开始使用预测性分析来检测自己全美60000辆车规模的车队,这样就能及时的进行防御性的修理。之前UPS每两三年就会对车辆的零件进行定时更换,但这种方法不太有效,因为有的零件并没有什么毛病就被换掉了。通过检测车辆的各个部位,UPS如今只需要更换需要更换的零件,从而节省了好几百万美元,这就是通过找出新种类数据之间的相互联系来解决日常需要。这种方式完成可以应用于我们石油石化行业,我们的大量生产装置及设备,在建立日常的关键部位检测机制基础上,形成大量的数据信息,通过对这些数据的科学分析,判断出需要检修或更换的零件,从而有效降低运营成本。
当我们一旦“不再追求精确度,不再追求因果关系,而是承认混杂性,探索相关关系”,“思维转变过来,数据就能巧妙的用来激发新产品和新型服务”。数据正成为巨大的经济资产,成为新世纪的矿产与石油,将带来全新的创业方向、商业模式和投资机会。
*年来,伴随着经济社会快速发展、深度调整,石油石化产业变革加剧,面临的四大革命中其中一项就是“数字革命”。因此我们必须牢牢把握数字革命发展大势,加强数据治理和大数据分析应用,提高企业生产运行与管理水*,拥抱大数据时代的来临。
这么多年来,看了很多东西,如今回过头来发现,好像什么都忘了,真是悲剧,所谓读书破万卷,下笔如有神或许是不对的,还是需要下笔勤快,所以决定从这里开始。
这些年对于技术的发展,我是没有跟上,如今发现即便是对于投资,技术对于我们生活的改变太大,而自己身在这个技术浪潮的前沿,还是需要跟上步伐。——前言
大数据这个概念已经提了很久,我也一直疏忽了对于它的理解。看完《大数据时代》,再结合如果工作上对于大数据的理解,顿时发现数据的重要性,以前在这方面的确没有足够的思想意识。整本书来说,我觉得最关键的三个点是前面几个章节:
1、要总体,不要随机样本:从小对于统计学相关的学*,基本都是从样本出发,理论的基础在于如何随机的足够分散的选取样本,这可是技术活加直觉。而对于大数据来说,要的就是总体,本质上来说,总体样本的确更能准确找到结果。但是对于统计来说,总体的分析增加了数据分析的难度,不仅数据核对不好进行,一旦出现数据污染,准确度就会大打折扣,而且进行数据回溯的时候,也无法准确确认问题,而这一点也是后面相关性上问题;
2、要混乱,而不是精确:这里主要想说明的是希望数据的多样性,尽量将相关数据都收集起来,不管是结构化的还是非结构化的。这样就不可避免的最终结果的不准确性。大数据更多的是从一个总体数据中说明以后概率事件,既然是概率,也就可以理解无法精确。这里有个点的说明,我觉得需要提一下,大数据算法更倾向于“简单”,而不是复杂,这个倒是出乎我的意外。
3、要相关性,而不是因果:从我对于知识获取的过程来说,我是不同意这个观点,从人体对于知识的理解,还是要从因果论出发,没有因果论,就会变成瞎子。而作者的观点上来说,原因可能还是从大数据本身的非准确性,一旦找到合适的算法,找到相关性,向上追述原因本身就很难。但是从举的示例上看,相关性的确认是一个非常大的工程,基本就是使用排举法,一个一个试。
所以,对于大数据来说,最重要的三点是:1、数据——得到更多数据;2、算法——建立更快的算法体系;3、思维——寻找数据间更多的相关性。
对于数据最终的走向,我同意书中所提到的*管理的观点,既然都是以“石油”的标准来看待数据,*统一管理也就是必然的了。而且对于*来说,掌握更多数据也有利于其管理及维护社会的稳定性。而对于社会道德方面的论述,我不想多说什么,时代发展是不会被道德绑架的。
所以最后,想要建立对于大数据的思维,《大数据时代》还是值得一读,里面的很多示例也非常不错。如人际关系这一块,也是出乎我的意料。
无处不在的大数据:各种云计算,谷歌的神通,亚马逊的推送,天涯人肉,微博万能等等,我们掌握了新的工具,也获取了以前从未有过的各种信息。大数据拉*了我们与现实的距离,“地球村”变成了“地球屋”,仿佛所有人所有事物都触手可及,而这些牛逼哄哄的互联网巨头就在客厅展示着世界的每一寸光景。
作者站在理论的至高点上,阐述了大数据对人类的工作、生活、思维带来的革新,大数据时代的三种典型的商业模式,以及大数据时代对于个人隐私保护、公共安全提出的挑战。作者认为大数据时代具有三个显著特点。
一、人们研究与分析某个现象时,将使用全部数据而非抽样数据;
二、在大数据时代,不能一味地追求数据的精确性,而要适应数据的多样性、丰富性、甚至要接受错误的数据。
第一次读大数据专题的书,谈起读后感肯定是班门弄斧了,就只是简单的说一说我的一些看法。
涂子沛的这部《数据之巅》,全书共八章,我原以为所谓"数据之巅"应当是展望未来的大数据时代,没想到全书竟是立足于过去,从历史切入。前面六章的内容,以美国自独立以来的发展历程为主线,从数据应用的角度,讲述美国政治制度,经济建设以及军事管理,每一章的结尾又分析*的现状,相应对比美国。一个国家的发展历程,从不同角度切入,就会有不同的着重点:军事家可能会串起每一次战争,分析军事战略;经济学家可能会梳理整个宏观经济环境的发展方向;政治学家可能会强调立宪立法各种政治制度的重要性。而作者从数据的角度切入,可以说是别开生面,让我们看到那些耳熟能详的故事背后数据所起到的作用。以南北战争为例,可能你知道林肯的民心所向,知道奴隶制度顺应潮流的消亡,但你未必知道谢尔顿将军以数据分析为基础进行的"向大海进军"的行动。类似的例子有很多,我觉得作者虽然以一个国家的发展历程为主线,但仍然写得有些凌乱,好像想到哪个与数据有关的故事就写哪个似的。美国立法治国过程中政治制度上的博弈、人口普查与统计学、参众议院的*位设置,到数据在医学上的应用、在农业上的应用、霍乱井、预算、诉讼实证、农业应用、商业市场调查与项目决策、戴明的质量控制等,然后又穿插讲一些数据处理的技巧:数据可视化、样本与总体、问卷设计等,接着又跳回内开放:数据与知情权、用数据制衡;直到七八章才涉及一些现代化的数据应用。
可以说,我读这本书最大的感受,其实是震撼于数据的应用之广泛之深刻,因为前面六章内容几乎就是在跟你讲数据在美国、*、日本等的历史上曾经起到这样这样的作用,在美国关于数据的挖掘和处理办法是怎样一步步完善。我觉得,这六章内容,跟书名《数据之巅》有些偏颇,主题该是数据,前面一两章讲讲数据在美国*历史上的作用,让读者感受一下数据的魅力,奠定一下基调就够了,结果直到五六章还是停留在这个层面,读来就有些腻了。如果书名改成类似《数据与历史》之类的,反而更好,这些历史已然是过去,数据之巅应该在未来。但我不得不承认,我确实为这些历史所震撼,也真的感觉到数据的重要性,未来如果能够做好数据的挖掘、处理、利用,应该是潜力无限的。
直至七八章,作者开始谈及"大数据时代",大数据计算涉及其在社会领域以及物理环境领域两个方面的应用。社会领域则是我们比较熟悉的,例如从消费记录了解消费心理、捆绑销售"啤酒与尿布"、阿里巴巴凭交易记录迅速放贷等等的应用,这些可能也是提及"大数据时代"大众的第一反应吧。物理环境领域的应用主要就是可穿戴设备、传感器等等这一类了。从亚马逊的"预判发货"、谷歌无人驾驶、3D打印机、智能学*的*台等等这些新兴事物,我们都可以看到数据在未来的一个发展前景。作者以"石油时代"类比人类即将迎来的"数据时代",其实非常直观易懂。
第八章作者提出"智慧城市"的概念,讲述了See Click、佛山"我的声音"、旧金山311应用程序、社交媒体nextdoor等众包、众智、众创*台,讲真啊,我不知道这些跟数据有个啥关系……但是作者提出的未来这种"让大众解决大众的问题"的模式我倒很是赞同。这之中跟数据有关的可能是涉及数据的隐私问题吧。大数据时代是不可避免的发展趋势,但隐私权确实是这个发展潮流中很重大、也必须解决的一个问题。
作者点明,所谓"数据之巅"就是"通过用数据训练机器,让机器获得智能,为人类提供自动化的服务".要有数据更要有计算,强大的识别算法才能实现数据挖掘,这是现有的阶段,而未来应该向"机器学*"发展,亦即编写"会自动调节的算法".
这本书,还行。没有大开脑洞的设想未来,从历史出发,让人感受到数据的魅力,在对比中,也让人看到*在数据方面与美国的差距,最后的展望,也是立足于现在。所以给人感觉比较踏实,对数据应用的理解更通透,而数据之巅在哪里,我觉得是每个读者在这个基础上延伸出去的头脑风暴。
真的是很凌乱的读后感,我觉得被作者看到要吐血的吧…对大数据什么的真的没有比较深的了解,但是读完这部《数据之巅》,以后会继续关注、了解相关的内容。
《黄金时代》读后感
当阅读完一本名著后,相信你一定有很多值得分享的收获,让我们好好写份读后感,把你的收获和感想记录下来吧。可是读后感怎么写才合适呢?以下是小编帮大家整理的《黄金时代》读后感,希望对大家有所帮助。
在黄金时代里,我也算是给自己找了个替身,那就是X海鹰。我就是那个帮教的团支书啊。在自我矛盾中成长。这让我很气,气自己。我和王二不是自己人,但我羡慕嫉妒他的勇气,我要教化他,我要改造他。我要用尽我毕生的全力,让他从一个后进青年变为一个有为男青年。作为*人挺惨的一点是,要做到推己及人的次数多了去。病态的思想,在一丝顽固的地方要最终保留自己的贞操。虽然我这个海鹰并非处于革命时期,虽然是这样,但过度禁欲又过度自我矛盾带来的某种冲动之后的懊悔不已而祈求一丝象征性东西来示自我纯洁,我也是如此的病态。
喜欢小波的一切文字,因为真因为歹毒,不加掩饰,赤裸裸揭露哪怕你内心自己闪过都觉得羞耻的话,他也给你全部写出来。我喜欢这种坦诚,因为我做不到。正因为我做不到,所以更加喜欢别人能做到。你做到了,我自然要佩服你要赞赏你,必要的时候还要打赏你。
我明确了一个东西,在我的阴阳世界里,自由和*等是不能并存的。倘若我要求自由,那我就要无拘无束,才不要有人以*等对待为由,教我必须按时与会参与讨论,否则要给我戴歪帽子。
小说在我这从来就不是小说,那是另一个*行的世界,在那个世界真实存在的。我虽不向往能成为其中一员,但作为同样活着的不像你们的人,我也得说点什么。
小波很了不起,我们也都很了不起。我们不应是被交流电电坏的蜻蜓,也不应该惦记着啥,我们是我们这群人。我们是火,可以熔化金,可以铸造金。从悲观主义者身上学到不悲观,这也是了不起吧。
黄金时代之所以黄金是因为回忆里的记忆闪着金光,是黄金的自己在黄金阶段创造的人生黄金事迹。
之于陈清扬,之于王二,两个完全相悖的人因为他的“肉”和她的“灵”而结合。王二是确凿的流氓,也是实在的汉子;而清扬无所谓,为了那贫瘠年代里的贫瘠的“伟大友谊”特立独行,不管不顾,她是自然之子,赤子的肉和灵付诸于这肮脏的世界。王二是幸运的,因为他如啊Q之龌龊,却比啊Q幸运,她遇到的不是假正经的吴妈,是纯粹的具有野性美自然美的“梅蕾苔丝”。也许造化弄人,命运之神见不得过于纯粹的美,就派一个纯粹的丑去“中和”。这里面多少是有点美丑对照的感觉,至于清扬因为王二的两巴掌产生的是爱?还是染苍染黄的异化感?说是什么都为这个赤子感到惋惜―——若爱,是错付的圣洁;若染,岂不是将美生生撕碎了给懂的人看?
当然王二也是值得同情的,异化的大背景让此人索性去证明自己的“不清白”,和所有丑陋的人性正面交锋,的确也是个汉子。他做不成君子似的英雄,只能扮演流氓似的野匪。这真是让人无所适从的一种角色分配,然而王二却也演绎着独有的人性本色。他向每一个遮遮掩掩的丑陋灵魂张牙舞爪地彰显自己“光明磊落”的龌龊和猥亵,倒叫一切都那么欲盖弥彰,反而让人产生一种对“真小人”莫名的敬畏感。
王二深知自己的份量,但也懂得敢做敢当的草莽英雄观,他试图不去辜负清扬;可是这赤子不需要也不明白,因为自始至终这自然之子―——“梅蕾苔丝”演的都是个人的内心戏。这就是阴差阳错,这就是情*缘远,强求不得。爱或不爱,哪里由得了自己!
关于*时代的故事,大部分分为两种:第一个,是所谓的伤痕文学。应该是反思*对社会的摧残和对那代人的伤害。不过讲道理,这种没看过,电视上也没放过。应该是哭哭啼啼式的。第二种是讲那个青春,激情的时代。比如都梁的《血色浪漫》,就感受不到任何的悲伤,只有那个激情的岁月。还有《阳光灿烂的日子》,不过,感觉《阳光灿烂的日子》更好像是少年的成长,里面有些情节和《西西里的美丽传说》有点像,不过,一个是在火热的年代,一群人的青春故事。另一个是战争年代,一个少年的内心。这中类型的应该是人生是豪迈的。电视上放的也是这种。黄金时代应该不属于这两种吧?
书里面描写了大量的陈清扬和王二同志在各种场合、各种机会、各种时节的巫山云雨。不得不说,在那个时代,能这么大胆的写作的人,应该没有几个吧?
这种描写和《白鹿原》中的明显不一样,其中细节描写确实很有意思,不是很露骨也不是很晦涩,绝对不是小黄书。
里面有一段很有名的话,具体记不清了。在我的黄金时代里,我觉得我会永远生猛下去,什么也锤不了我。但是生活就是一个慢慢受锤的过程。毋庸置疑,生活可能就是这样。所以希望大家至少是慢慢受锤,不能一下被锤废了,这就不好了,哈哈哈。这让我想起微博上的那句话,尚未配妥剑,出门便已是江湖。最后一句是:愿千帆过尽,内心仍是少年。
听过很多次王小波的大名,但是从来没有度过,这是第一次读他的书。刚开始读的时候我在想这个人怎么这么粗俗,生殖器脏话天天挂在嘴上,读了一两章还是不太能够接受他的风格,但是读完之后对他的看法又突然是180度转变。
性似乎是王小波这本书的主旋律。不管是黄金时代,革命时期的爱情还是我的阴阳两界,每一部分都是和一个或者几个女人的故事。其实这很妙,抓住了大家的聚焦点,然后深入浅出地讲了一下他想讲不要求我们懂的东西。想懂他的把每个句子画下来慢慢分析,不想懂他的就当 丑男的罗曼史 看也无妨。
看的时候觉得王小波妙语连珠,还标记下不少句子写点批注,还想着最后写评价的时候一定要提一下,但是对着一块空白的写字区,脑子里只能记起零星几句,算了,索性不说了。
我最大的感受就是王小波对女性的尊重和喜爱,即使他在书里以一个名为王二的理工男为视点,但是从来没有任何贬低女性的观点,这一点我很佩服,调侃的也完全不朝着这方面。反而从他的对女性的描写里,看到一个个灵动丰满美好的女性,不管是性格还是外貌,让我第一次对女性这个群体感到的是崇敬和羡慕,当然我没有贬低自己或者其他女性的意思,因为一直以来的看法都是,女性有诸多禁忌,生冷不能吃等等,而且诸多不便,以及诸多危险,以至于经常会想自己是个男孩就好了,王小波第一次让我看到女性是这么一个美好的存在。
如果说写性是为了迎合读者,我觉得这不公*,因为王小波只是在描述事实,他或许根本不在意有没有人看他的书。很多人都说王小波是个很有趣的人,我也不否认,但是“有趣”这种现在已经用烂了的我都不好意思说它是褒义的词,再用在他身上,未免也太委屈他了。
在釜山,用A4纸读王小波的《黄金时代》,两个晚上,用瑜伽后的休息时间finish掉。
作者用一些看似极其不入流的思想去讽刺那个糟糕荒谬的年代。*这个时代,经历过的人总是给它定位成灰色的惨淡。而在这本书里,我们看到的却是意识上的自由带来的鲜明色彩。作者把那段时光命名为他的黄金时代。读毕,我确实赞同这种定义。
王小波式的幽默总让人忍俊不禁,但,不过是种假象而已,这种感觉就好比你含着一颗裹着糖衣的药片,时间溜走后,留下的是长久化不掉的苦涩。
我承认自己爱上了那段天昏地暗,乱七八糟的时光,看不清未来,找不到想要的生活,和唯一的一个大概能谈得来的朋友,一起过着原始人的日子,从不会想着要一个结果,明天,是奢侈的字眼,生活,似乎也不是那么的艰难·······
一个大的时代,总是可以催化了一代人的感觉,但是它同样具有一种反作用力,即现实的枷锁愈紧,人的心却愈渴望自由。
我们这个时代呢?一切都是自由的,开放的,赤裸裸的。
我们的心呢?
我们还有自由么?
今天的你,是否还可以无所顾忌地去爱,爱上此时你觉得对的人,不去想下一秒钟你担负着谁的责任?
今天的你,是否还可以肆无忌惮地扔掉所拥有的一切,逃跑到世界的某一个角落里过原始人的生活,仅仅为了快乐···
这个时代给了我们太多的自由,但是我们的心已经被这种反作用力完全催化了,我们宁愿不自由,我们宁愿享受禁闭。我们宁愿麻木。
这段时间,我总是想跳出来····多么简单又奢侈的念头啊~
要感谢作者,至少他给了我这么做的勇气。
读王小波的书,真的像评价的那样,读过之后给人以强烈的快感。
这本书里包含了《黄金时代》《三十而立》《流年似水》《革命时期的爱情》等篇章,主人翁的名字都叫王二。
书中王二是个一米九几的大高个,面目不说是狰狞但也不怎么好看。似乎王小波笔下的王二大多也是面目凶恶。我不知道这是否与他本人有关,亦或是其他的一些事物的投影。书中屡次提到弗洛伊德,很多影响也与这位心理医生有关性的心理学说有关联。人的一切冲动都来源于原始的性压抑。这是我在读弗洛伊德心理学里读到的,而王小波的作品里,隐隐约约带有着这些意味。
王二与陈清扬在云南插队,在那里相爱,然后时间在而今与过去之间穿插,一会回到云南的草屋或者大队,一会回到现在与二妞的矛盾与小转铃的纠结,然后又回到线条。时光在六几年与七几年之间往返变换,贺先生跳楼,刘先生死去,李先生的XX血肿后来同线条结婚。后来王二当上了一名大学讲师,这与他之前的种种行径极为不符,但是生活确实是这样,它不会按照既定的路线一成不变。
这本书从来不按时间顺序来规规矩矩的描述事物的发展,而是逻辑,从一样事物的逻辑牵扯上另一样事物的逻辑。就好像革命时期的爱情里的王二,一直试图去翻越那个炉筒,他相信里面一定有着异样的景观。而这种逻辑被他用在今后的很多思想中。
看黄金时代,一开始,我觉得作者在写王二和陈清扬破鞋的故事,感叹于**这件事被他写的日常又洒脱,感叹于作者一尺长的小和尚傲娇又淡然的,感叹于陈清扬爱上王二的心理世界。一个人得爱的.多深沉,才能钻进心窝里,又憋住全部的自己生怕破坏了伟大的友谊。而后,我觉得这不过是他们彼此的黄金时代,他们彼此互不亏欠,他们度过自己人生中最值得谈资的岁月。
三十而立,看夜空的时候,总会有一种油然而生的渺小感,无论做什么,都不能改变我渺小的事实。似乎我活着,走动在这个世界上,就超越了死亡。以人的姿态活着,又来嫌弃人性。本该四十而不惑的年纪,被写成了似水流年。如果用第三人称来讲述,是不是没有那么多的伤感,假装站到了上帝视角。一度想成为一名战士,可是看到了生死之后,又想做就算是无处安放的欲望也罢了,给自己一点时间,扔进似水流年里。
看革命时期的爱情有一部分写到,王二写到恨自己老爸,可是后来又不恨了。可能很多事情爱也好,恨也好,快乐也好,痛苦也好,是拎不清的。最后,只求真实却是境界的巧妙。爱情就是爱情,加了革命时期的修饰,就好像说的不是爱情了。妙的是,革命时期之后,故事里的人又重逢,那奶糖味道也不在,美人儿也失落倍增,而当初的浑小子变成浑老子。当真不当真的都过去了,那个年代除了些无聊的事,也怕无事可做。
在硬的时期我生活在灯光中,软了以后生活在阴影里。
很有意思的书。
无论这日子过成悲剧还是喜剧,至少活的真实。
这本书我看了两遍,第一遍没看懂,故事线都是乱的,一直懵的状态,第二遍稍微清晰了些。王小波的写作风格是自我对话式的,他在追问自己的存在,在所有的细节上都在追问自己,感觉他写东西主观意识特别强。
这本书的写作特征是碎片化描写,跳跃性思维,总是在说一件事的时候不动声色地描述着看起来不相干的事物或者联想到很久以前一件别的事,貌似很乱,实则形散意不散。
(全书讲了3个王二的故事,共同的主题是我们的生活,当然都不乏性爱主题,它是灵与肉的深层契合 )
卢梭说: “人生而自由,却无往不在枷锁之中”。我们生来想要做自己,却又无时无刻不被裹挟在某种他人塑造的“自我”中。
羡慕王小波直面内心的勇气和不随波逐流的自我认知。一股认认真真揣着明白装糊涂的劲儿,知道话说多了矫情挑明了没劲,那么不问不说糊涂着挺好。默默的不同着,特立独行着。
这个世界是混沌的,没有绝对的对错,绝对的自由。爱恨交集,痛并快乐着,混沌存在的这些情感。本就分不清,所以我只求它货真价实,认真感受它,欣赏它的存在。
就像书里的王二,是个纯粹而又聪明的人,他将生命的苦难与幸福都化成嘻笑不羁随风而去,释放着形骸去经历生命的每一刻,这是他早就作出的选择。我写诗而从不发表,我的诗之为我而歌,不是为了取悦或遗留史海,我不为那份不属于生命的名利去追逐,只是为了纯粹的存在。
据数联寻英发布《大数据人才报告》显示,目前全国的大数据人才仅46万,未来3-5年内大数据人才的缺口将高达150万。
据职业社交*台LinkedIn发布的《2016年*互联网最热职位人才报告》显示,研发工程师、产品经理、人力资源、市场营销、运营和数据分析是当下*互联网行业需求最旺盛的六类人才职位。其中研发工程师需求量最大,而数据分析人才最为稀缺。领英报告表明,数据分析人才的供给指数最低,仅为0.05,属于高度稀缺。数据分析人才跳槽速度也最快,*均跳槽速度为19.8个月。
根据*商业联合会数据分析专业委员会统计,未来*基础性数据分析人才缺口将达到1400万,而在BAT企业招聘的职位里,60%以上都在招大数据人才。
大数据主要的三大就业方向:大数据系统研发类人才、大数据应用开发类人才和大数据分析类人才。
在此三大方向中,各自的基础岗位一般为大数据系统研发工程师、大数据应用开发工程师和数据分析师。
北京数据分析*均工资:10630/月,取自15526份样本,较2016年,增长9.4%。
【摘要】
财务管理是企业管理的核心,随着互联网的普及,财务工作的内涵和外延不断扩展,如何适应科技发展,提升财务管理的效率和质量就成为企业必须考虑的问题。本文中,笔者就将从财务分析的发展历程和传统财务分析面临的主要问题入手,参考相关理论与文献,结合财务工作实际,对大数据时代下的财务分析具体策略展开研究。
【关键词】财务管理;大数据时代;财务分析
随着信息化时代的发展,云*台、物联网等新兴技术逐渐走入我们的生产与生活。大数据作为海量数据的处理技术,能够帮助人们快速实现数据的归集与分析,为管理者决策提供依据,对于财务管理意义重大。本文中,笔者主要从结果分析转向过程管控、单一分析转向多样性分析、阶段分析转向实时分析等方面对大数据时代下财务分析的发展方向进行研究,并提出一些做好财务分析工作的具体策略。
一、财务分析的发展历程
(一)手工处理阶段
早期,会计人员对数据的采集、存储、加工、传递都是依靠纸张和算盘等计算工具进行的,这种手工方式的处理需要阅读大量的会计资料,在整个过程中,会计人员很容易出现差错,除此之外,手工处理的效率也相对低下。
(二)计算机处理阶段
计算机问世后,财务数据的分析与处理效率得到极大提高,但借助计算机的财务分析也仅仅只是手工方式的模拟,即一种程序只能完成一项业务的分析,会计资料、信息的交换与分享仍主要经由光盘、软盘等存储介质。这一阶段,计算机处理的信息具有很大局限性,各部门对资料的决策参考不能实现充分交流,及时性和准确性有待进一步提升。
(三)网络处理阶段
互联网的普及使财务资料和信息能够借助网络进行处理和传递,会计实现了业务流程和信息流程的集成处理,彻底消除了以往“信息孤岛”的现象,极大提高了企业的信息共享性。但这一阶段对于数据的总结、归纳、提炼仍不够精确,数据的使用价值有待提高。
(四)大数据分析阶段
大数据分析是建立在云计算基础上的一项新型技术,大数据下的财务分析,数据的抽取与分析将更为便捷,数据的结构、内涵将更加复杂、多样,加之分析方法更加精确、更加智能,财务分析的时效性与决策参考价值都得到很大程度提升。
二、传统财务分析面临的问题
(一)以事后分析为主,对事前、事中管控不足
传统财务分析只能对已经发生的财务数据进行归集、处理,这时分析结果的实效性和有效性已经大大降低,既不利于企业财务管理的风险控制,也不利于企业的经营决策。加之,通货膨胀等宏观经济原因的影响,企业的资产会被低估,成本偏低,收益虚增的情况时有发生,这将对企业利润表与资产负债表的真实可靠性不利。
(二)以财务报表分析为主,对非财务资料的分析不足
传统财务分析主要参考财务报表,这使得财务分析的数据和结果均有局限性。一方面,企业固定资产折旧、对外投资核算以及存货发出计价等内容可以依据会计准则以及自身实际情况选择不同的会计处理方法,因此,数据的处理结果往往不具有可比性。另一方面,固定资产折旧年限、固定资产净残值率以及坏账准备金比例等受到会计人员主观影响的可能性较大,这些由估算得来的数值也会对财务分析产生一定影响。
(三)以结果为主,过程分析不足
大多数企业的财务分析仅将企业最终的利润作为分析重点,即过分注重经营结果,忽略了财务管理中的先进管理分析、非会计材料分析、资金链分析等过程分析,认为只要企业盈利了就表明经营状况良好。这种分析思路对于控制企业经营成本与风险不利,不能从根本上帮助提高企业投资产出比和资本运营能力。
(四)以应付外部监管、检查为主,参与企业管理与决策的功能不足
目前,大部分企业的财务分析工作只是为了应付外部检查而设置的,其在企业经营管理中的地位较低,不能参与企业的管理决策。此外,财务分析对应的外部检查项目种类较多,检查方式也多为制式表格,会计人员疲于应付填表,无法实现对数据和信息的细致分析。
三、大数据时代下财务分析的发展趋势
(一)由结果分析向过程分析
转变以销售业务为例,以往的财务分析主要针对终端的销售结果进行统计,进而实现对产品渠道、组织、数量、金额等内容的分析,但这种分析方式无法对产品销售进行溯源,只能根据结果进行定性判断,也就不能为决策提供准确参考。大数据时代下,后台人员能够对特殊信息进行采集、处理,还可对消费者评价、促销活动情况等中间数据与信息进行归集、分析,这对于企业及时调整经营策略,提高经营效率具有重要意义。
(二)由单一分析向多样性分析
转变要判断某个客户的经营状况,按照传统财务分析的思路分析其财务报表是不全面的,必须要有大量的财务数据和非财务数据支撑才能得到更精确的结论。在大数据时代下,财务分析要从以往的单一分析向多渠道信息分析转变,实现对数据内容的拓展,帮助企业更全面地了解自身经营情况。
(三)由阶段性分析向实时分析转变以往对终端信息的采集以及财务分析报告的出台多是定期的,这对于突发项目考虑不够全面,不利于企业的风险管控。在大数据时代下,个性化的策略和精细化的财务分析能够做到实时查询,信息能够通过网络及时传递,企业也能及时参考分析结果进行经营调整。
四、大数据时代下做好财务分析工作的具体策略
(一)提高财务分析人才素养大数据时代,财务分析将在企业管理中扮演更重要的角色,因此,财务人员要更深入地学*新的分析方法,提高自己使用新技术的能力,培养自身敏锐的判断力,积累财务分析的经验,树立大财务思维,重视大数据的开发和运用。
一方面,财务人员要苦练内功,具备扎实的会计业务能力,另一方面还要将视野扩大至决策分析与支持、信用管理、风险管理、作业成本管理等综合管理领域,提升自身财务大数据的处理能力和分析能力。
(二)制定清晰的财务分析战略
行业和企业不同,对于大数据的使用也会存在一定程度的差异,因此,企业要根据自身所处的行业特点与企业属性制定财务战略,构建适合自己的财务分析体系。
具体来讲,企业一方面要明确自身实际,确定自身业务量和信息量,并针对数据的规模确定财务分析的层次、结构以及配备的人员数量和目标结果;另一方面,财务分析战略的建构是一个宏大的工程,企业要制定中长期计划,逐步完成,不可盲目求大,要从IT架构等基础设施做起,逐步向各环节业务领域实现拓展。
(三)完善财务分析新系统的主要功能
首先,要实现大数据财务分析的灵活查询功能。企业要依据职能不同为各环节各部门分配不同权限,用户可查阅权限以内的相关数据,同时,还要进一步完善财务系统建设,筛选真正有价值的指标进行收集与处理,为企业决策提供更准确的参考内容。其次,要引入多维分析技术。
在实际过程中,财务人员面对的资料和数据往往较为复杂,这就需要我们引入多维分析处理技术,进一步整合数据源,提高指标计算的自动化程度,进而提升财务分析的综合性。最后,要引入人机交互的操作模式。大数据时代的财务分析系统要能够根据实际需要进行信息性质和范围的变动,方便财务人员及时进行人为调整,提高财务分析的适应性。
五、结语
总之,大数据时代的到来为企业的发展提供了机遇,作为企业管理核心部位的财务分析应主动适应时代,找准自身定位,做发展的引领者,广大财务人员要进一步创新工作方式,拓展财务分析的外延与内涵,使之成为企业决策、发展的智库。
【参考文献】
[1]涂子沛.大数据:正在到来的数据革命[J].广西师范大学出版社,2012(08)
[2]孟小峰,慈祥.大数据管理:概念、技术与挑战[J].计算机研究与发展,2013(01)
[3]迟红梅.发挥财务分析在企业财务管理中的核心作用的研究[J].时代金融,2011(04)
[4]程*,王晓江.大数据、云会计时代的企业财务决策研究[J].会计之友,2015(02)
摘要:
本文从企业的发展由来、中小企业财务管理所存在的问题出发,在列出了几个典型的问题后进行进一步的阐述。企业财务管理犹如企业的血液,要是血液出了问题,那么整体都会出现严重的问题。在深入揭示企业财务管理所存在的问题的同时,本文也给出了一些合理建议和对策供参考。
关键词:
中小企业;财务管理
1、引入背景
现代企业往往都有着很深远的历史,其发展与生产由当时的商品经济情况和生产力状况决定,在其发展的过程中,往往会产生很多的问题,如企业的发展方向该怎么选,企业的目标怎么定,企业的组织结构,企业管理模式,企业财务管理等等。对于企业来说,目标是导向,组织结构和管理模式是根基,而企业财务管理则是决定企业如何周转资金从而实现可持续发展的重要的一点。随着国家相关政策的出台,很多企业相应国家的号召,进行企业的现代企业制度的建设与改革,这在很大程度促进了企业的转型升级和提升,对于形成一个良好的市场经济有着重要的作用。企业财务管理自然而然也发生了很大的转变,从以往单一的财务管理模式到现在的复合型财务管理模式,任何事物都有两面性,企业财务管理模式的转变自然而然也带来了一些问题。去了解这些问题并且尝试提出解决这些问题方法显得尤为重要。
2、中小企业财务管理的问题
《大数据时代》读后感
大数据时代读后感范文
大数据时代的读后感
大数据时代数据化读后感
大数据时代读后感1000字
大数据时代读后感500字
大数据时代读后感800字
大数据时代读后感2000字
大数据时代的教育读后感
贵州省情大数据读后感
大数据方案
政务大数据方案
大数据*台方案
大数据备份方案
大数据技术方案
大数据应用方案
大数据优化方案
大数据*台技术方案
大数据系统硬件方案
大数据实*报告
大数据设计方案
大数据工作计划
大数据管理*台方案
小时代读后感
连接时代读后感
大数据项目技术方案
大数据*台总体建设方案
大数据应用实施方案
医疗大数据解决方案
大数据心得体会
学校诚信建设活动总结
四月中班工作总结2200字
高等学校科研工作总结2400字
教研工作总结小学
质量改进措施检讨书
医院学科建设工作总结1500字
高等学校科研工作总结2500字
幼师5月中班工作总结900字
学校安保个人工作总结
高校团总支年度工作计划
学生期末个人工作总结900字
中学校长年终工作总结2300字
学校出纳年终工作总结900字
大班班级家长工作总结2200字
美术校本研修工作总结
绿色学校创建工作总结1600字
小学学校党建工作总结
学校组织人事工作总结2300字
绿色示范学校工作总结1900字
学校信息处工作总结1900字
高等学校科研工作总结1900字
学校总务工作总结1500字
学校基础建设工作总结
学校出纳工作总结2200字
特殊学校工作总结
中学绿色学校工作总结1300字
绿色学校创建工作总结1300字
学校后勤保卫工作总结1300字
小学校长工作总结范文2500字
学校体质健康工作总结1200字
教务处3月工作总结1000字