三角形的内角和教案

关于三角形的内角和教案的文字专题页,提供各类与三角形的内角和教案相关的句子数据。我们整理了与三角形的内角和教案相关的大量文字资料,以各种维度呈现供您参考。如果三角形的内角和教案未能满足您的需求,请善用搜索找到更适合的句子语录。

  • 三角形内角和教案菁选

  • 三角形内角和教案

      作为一名默默奉献的教育工作者,常常要根据教学需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。来参考自己需要的教案吧!下面是小编整理的三角形内角和教案,欢迎大家分享。

      设计说明

      三角形的内角和等于180°是三角形的一个重要特征,明确三角形的内角和等于180°是以后学*和解决实际问题的基础。

      1.让学生在生动具体的情境中学*数学。

      《数学课程标准》指出:在教学中,教师应充分利用学生的生活经验,设计生动有趣、直观形象的数学教学活动,如讲故事、直观演示、模拟表演等,激发学生的学*兴趣,让学生在生动具体的情境中理解和掌握数学知识。在本节课的教学设计中,为了增强学生的学*兴趣,使其快速、积极、主动地投入到学*中,上课伊始的故事导入以及新知识的情境创设都能把学生带入快乐的学*氛围中。

      2.通过操作、观察、猜测、交流,使学生体验数学知识的形成过程。

      在本节课的设计中,对于三角形的内角和等于180°这一结论没有直接给出,而是通过量、算、剪、拼、折等活动证实了三角形的内角和等于180°,使学生在自主获取知识的过程中,培养了创新意识、探索精神和实践能力。

      课前准备

      教师准备 PPT课件 量角器 直尺

      学生准备 量角器 直尺 各种三角形

      教学过程

      第1课时 三角形内角和(1)

      ⊙故事引入

      三角形的家庭是一个团结的大家庭。但今天,三角形的家庭内部却发生了争论,一个钝角三角形说:“我的钝角比你们的角都大,所以我的内角和最大。”一个锐角三角形说:“我的个子比你高,我是大三角形,你是小三角形,所以我的内角和肯定比你大。”一个直角三角形说:“不能只看一个钝角大就说内角和大,也不能只看个子,这样不公*。”其他的三角形也跟着争执不休,都说自己的内角和最大。这时,家庭里的王者来了,听了它们的诉说,也糊涂了。什么是三角形的内角?什么是三角形的.内角和呢?

      (课件演示三条线段围成三角形的过程)

      师生共同小结:三条线段围成三角形后,在三角形内形成了三个角,这三个角就是三角形的三个内角(课件闪烁三个内角)。这三个内角的度数之和就是这个三角形的内角和。

      导入:到底谁说得对呢?这节课我们一起来探究三角形的内角和。[板书课题:三角形内角和(1)]

      设计意图:由故事引入,激发学生的学*兴趣,并通过故事提出问题,带着对问题的思考,唤起学生的求知欲望,从而使他们主动投入到学*中去。

      ⊙自主探究,合作交流

      1.提出问题。

      师:你有什么办法来比较两个三角形的内角和?

      2.量一量,算一算。

      (1)出示活动要求。

      ①在练*本上画一个锐角三角形、一个直角三角形和一个钝角三角形。

      ②用量角器测量所画三角形的各个内角的度数,把测量结果记录在表格中,并计算出每个三角形的内角和。

      (2)小组合作,量一量,算一算。

      (3)交流汇报。

      师:观察计算结果,你发现了什么?

      引导学生发现每个三角形的内角和都在180°左右。

      学科:数学

      年级/册:4年级下册

      教材版本:人教版

      课题名称:4年级下册第五单元《三角形的内角和》

      教学目标:

      掌握探究方法(猜想—验证—归纳总结),学会用“转化”的数学思想探究三角形内角和。

      重难点分析

      重点分析:教材在呈现教学内容时,不但重视知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间。三角形的内角和的性质没有直接给出,而是提供了丰富多彩的动手实践的素材,让学生通过探索、实验、讨论、交流而获得,从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学经验,同时发展空间观念和推理能力,不断提高自己的思维水*。

      难点分析:通过*四年的数学学*,学生已初步掌握了一些学*数学的基本方法,具备了一定的动手操作、观察比较和合作交流的能力。但是围绕数学问题开展初步的讨论活动,能比较清楚的表达自己的意见,认真倾听他人的发言,这些初步的数学交流能力还欠缺。

      教学方法:

      1、探索过程中培养学生的动手实践能力、协作能力及创新意识和探究精神,发展学生的空间思维能力,同时使学生养成独立思考的*惯。

      2、在活动中,让学生体验主动探究数学规律的乐趣,体验学数学的价值,激发学生学*数学的热情。

      教学过程

      导入:各位同学大家好,今天由我来和大家一起学*人教版四年级下册《三角形的内角和》,我们前面学*和了解了三角形的相关知识,请大家说说三角形按角分,可以分成哪几类?知识讲解(难点突破)

      例五:画出几个不同类型的三角形。量一量,算一算,三角形3个内角的和各是多少度?解决这个问题的时候,我们先来了解一下什么是三角形的内角和?

      讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。

      (一)量一量:我们如何解决这个问题呢?

      同学们请看,这里有一个直角三角形,我们先分别量一量这个直角三角形三个内角的度数并标注。90°30°60°现在我们将这三个内角的度数加起来等于180度°通过测量计算发现这个直角三角形内角和都是180°,是不是所有直角三角形的内角和都是180°呢?同学们你们也来量一量你刚才画的直角三角形3个内角的度数,算一算是不是也和老师的'结果一样呢?注意在测量要认真,力求准确。停顿数秒从刚才的测量和计算结果中,你发现了什么?你是不是发现直角三角形的内角和都是180°当然有些同学的测量结果不是等于180°,这是我们在测量时,由于在测量工具、测量方法等各方面的原因,使我们的测量结果存在一定的误差。实际上,直角三角形三角形内角和就等于180°。

      (二)

      1、提出猜想:刚才我们通过测量和计算发现了直角三角形内角和等于180,那你能不能大胆的猜测一下:锐角三角形内角和,钝角三角形的内角和是不是也是180°呢?

      2、动手操作,验证猜想这时每个同学的心中都有了猜测的答案,这个猜想是否成立呢?除了用量角器量一量,你还有其他办法来验证吗?聪明的你,是不是想到好办法了,那就快快动手吧!

    [阅读全文]...

2023-02-22 00:00:00
  • 《三角形内角和》说课稿

  • 说课稿,范文,教育
  • 《三角形内角和》说课稿

      作为一名老师,就难以避免地要准备说课稿,借助说课稿可以提高教学质量,取得良好的教学效果。说课稿要怎么写呢?下面是小编精心整理的《三角形内角和》说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。

      一、说教材

      1、说课内容

      今天我说课的内容是人教版九年义务教育小学数学四年级下册第五单元第67页的《三角形的内角和》。

      2、教材分析

      《三角形的内角和》是探索型的教材。是在学生学*了三角形、长方形等基本图形,以及角的度量、三角形的特征、分类的基础上进行教学的,学生对这一知识的理解和掌握又将为进一步学*几何知识打下坚实的基础。

      教材的知识它是分成3个部分来呈现的。第一部分是让学生通过量一量、算一算,初步感知三角形的内角和是180°;第二部分是通过拼角的实验来探究并归纳三角形内角和的规律,第三部分是运用规律、解决问题。教材这样编排由发现问题,到验证问题,再到运用规律,充分体现了知识结构的有序性和强烈的数学建模思想,既符合四年级学生的认知规律,又突出了本课教学的重点。

      3、教学目标

      根据小学数学教学大纲对四年级学生的具体要求,结合教材特点及学生年龄特征,将本节课的目标制定为以下几点:

      知识与技能:学生动手操作,在猜想后通过量、剪、拼、折的方法,探索并发现"三角形内角和等于180度"的规律。

      过程与方法:在操作实验中,让学生感受图形的转化过程及数学建模思想,初步培养学生的空间思维观念。解决问题:在运用知识解决问题的过程中,感受所学知识的重要性,初步培养学生的应用意识。

      情感态度:通过各种实验活动,激发学*兴趣,体验学*成功感,并在教学中,感受生活与数学的密切联系。

      4、教学重点难点

      根据本节课的教学目标及对编者意图的理解。将运用各种实验方法探究三角形内角和为180度的过程并掌握规律,运用规律解决实际问题确定为本节课的教学重点。而同时学生难以理解不易掌握的探究规律的全过程则是本节课的教学难点。

      5、教学具准备

      每个4人小组准备三个不同的三角形(锐角三角形、钝角三角形、直角三角形的纸片一个,且要求大小不一)、实验报告单一份;量角器、白板。

      二、说教法学法我要说的第二块是教法学法。

      新课程标准的基本理念就是要让学生"人人学有价值的数学"。强调"教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程"。

      因此,我运用猜想验证,自主探究,动手操作,直观演示的教学法,让学生大胆猜想,自主探索三角形的内角和是多少度?再通过测量、拼折、验证等方式让学生确定三角形内角的度数和。这样,既培养了学生的观察能力和归纳概括能力,又体现了学生动手实践、合作交流,自主探索的学*方式。

      在整个教学设计上力求充分体现"以学生发展为本"教育理念,将教学思路拟定为"故事设疑导入--猜想验证{自主探究}--巩固新知—数学文化—课堂总结",努力构建探索型的课堂教学模式。当然,一堂课的效果如何,还要看课堂结构是否合理。接下来,我就来说说我的教学程序设计。

      三、说教学流程

      根据我对教材的把握和对学情的了解,设计了5个环节展开教学。

      四、创设情境,发现问题

      一天,图形王国举行了一场盛大的宴会,正在大家聊得热火朝天的时候,突然下面传来了一阵吵闹声,图形王国的国王“点”来到争吵的地方一看,原来是三角形家族在争吵,只听一个钝角三角形说:“我有一个内角是最大的,所以我的三角和也是最大的。”,这时候一个锐角三角形说“我长得比你大,所以说我的内角和才是最大的!”,这时,一个直角三角形弱弱的说了一句:“谁长的大,谁的内角和就最大,这不公*!!!”,于是他们就让国王来评理,听到这里国王的也糊涂了:“你们说的都是什么呀?什么是三角形的内角,什么是三角形的内角和呀?”

      五、合作交流,引导探究

      (1)学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接*180度。

      (2)教师要组织学生进行小组合作每人用量角器量出一种三角形(锐角三角形、钝角三角形、直角三角形)的三个内角并计算出它们的总和是多少?

      (3)记录小组测量结果及讨论结果

      实验名称:三角形内角和

      实验目的:探究三角形内角和是多少度。

      实验材料:量角器,锐角三角形纸片,直角三角形纸片,钝角三角形纸片。

      (4)学生汇报量的方法,师请同学评价这种方法。

      师小结:直接量的方法挺好,虽然测量有误差,不准,但我们能知道,三角形的内角和只能在180°左右,究竟是不是一定就是180度呢,谁还有别的方法?

      (一)剪拼法

      学生汇报后师小结:能想到这个方法不简单,拼成的看起来像*角,到底是不是*角呢,我们一起来试试看。(教师和学生剪一剪、拼一拼)

      师:把三角形的三个内角凑到了一起,拼成了一个大角,角的两条边是不是在一条直线上呢?看起来挺象的,但在操作的过程中难免会产生误差,有时会差一点点,谁还有别的方法确定三角形的内角和一定是180°?

      (二)折拼法

      学生汇报后师小结:我们要研究三角形的内角和,实际上就是想办法把三角形的三个内角凑到一起,像剪和折的方法,看三个内角拼到一起是不是180度,都是借助我们学过的*角解决的问题。

      这三种方法都不错,在操作的过程中,有时会有误差,不太有说服力。想一想,你还能不能借助我们学过的哪种图形,想办法说明三角形的内角和一定是180度?

      (三)演绎推理法

      (借助学过的长方形,把一个长方形沿对角线分成两个三角形。)

      师:你认为这种方法好不好?我们看看是不是这么回事。

      (演示课件:两个完全相同的三角形内角和等于360°,一个三角形内角和等于180°)

      师小结:这种方法避免了在剪拼过程中由于操作出现的误差,非常准确的说明了三角形的内角和一定是180度。

      (学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。)

      学生用的方法会非常多,但它们的思维水*是不*行的。

      直接测量法是学生利用已有的知识,测量出每个角的度数,再用加法求和;

      拼角求和法,也就是间接剪拼和折拼这两种方法,都是通过拼成一个特殊角,也就是*角来解决问题;而演绎推理法,即把两个完全相同的三角形合二为一,或把长方形一分为二,成为两个三角形,这是更深层次的思考。

      前两种方法是不完全归纳法,能使我们确定研究的范围只能是180度左右,而不可能是其他任意猜想的度数。最后一种方法具有演绎推理的色彩,把一个长方形沿对角线分成两个完全相同的三角形后,因为两个三角形的内角和是原来长方形的四个内角之和360度,所以一个三角形的内角和就是360°÷2=180°,这种方法从科学证明的角度阐述了三角形的内角和,它有严密性和精确性。

      六、训练提高

    [阅读全文]...

2022-11-27 09:56:40
  • 三角形内角和教案3篇

  • 教案
  •   【教学目标】

      1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。

      2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。

      3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。

      【教学重点】

      探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

      【教学难点】

      对不同探究方法的指导和学生对规律的灵活应用。

      【教具准备】

      课件、表格、学生准备不同类型的三角形各一个,量角器。

      【教学过程】

      一、激趣引入。

      1、猜谜语

      师:同学们喜欢猜谜语吗?

      生:喜欢。

      师:那么,下面老师给大家出个谜语。请听谜面:

      形状似座山,稳定性能坚,三竿首尾连,学问不简单。(打一图形)大家一起说是什么?

      生:三角形

      2、介绍三角形按角的分类

      师:真聪明!!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类

      师分别出示卡片贴于黑板。

      3、激发学生探知心里

      师:大家会不会画三角形啊?

      生:会

      师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。试一试吧!

      生:试着画

      师:画出来没有?

      生:没有

      师:画不出来了,是吗?

      生:是

      师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学*有关三角形角的知识“三角形内角和”(板书课题)

      二、探究新知。

      1、认识三角形的'内角

      看看这三个字,说说看,什么是三角形的内角?

      生:就是三角形里面的角。

      师:三角形有几个内角啊?

      生:3个。

      师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出)

      师:你知道什么是三角形“内角和”吗?

      生:三角形里面的角加起来的度数。

      2、研究特殊三角形的内角和

      师:分别拿出一个直角三角板,请同学们看看这属于什么三角形,说出每个角的度数,那这个三角形的内角和是多少度?

      生:算一算:90°+60°+30°=180°90°+45°+45°=180°

      师:180°也是我们学*过的什么角?

      生:*角

      师:从刚才两个三角形的内角和的计算中,你发现了什么?

      3、研究一般三角形的内角和

      师:猜一猜,其它三角形的内角和是多少度呢?

      生:

      4、操作、验证

      师:同学们猜的结果各不相同,那怎么办呀?你能想个办法验证一下吗?

    [阅读全文]...

2022-03-26 19:45:29
  • 《三角形的内角》说课稿3篇

  • 说课稿
  •   一、教材分析

      1、说教材

      《三角形的内角》是九年制义务教育人教版七年级下册第七章《三角形》的第二节内容,本节课是在学生学*了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过拼图说出“三角形的内角和等于180°”成立的理由,由浅入深,循序渐进,引导学生观察、实验、猜测,逐步培养学生的逻辑推理能力……

      2、教学目标和要求

      根据新课标的要求及七年级学生的认知水*,我制定本节课的教学目标如下:

      ⑴了解三角形的内角

      ⑵会用*行线的性质与*角的定义证明三角形的内角和等于180°

      ⑶学会解决与求角有关的实际问题

      ⑷初步培养学生的说理能力

      3、教学的重点与难点

      重点:了解三角形的内角和性质,学会解决简单的实际问题。

      难点:证明三角形的内角和等于180°。

      二、说教学理念

      培养学生的合作探究精神,自主学*、创新精神是新课程标准的重要理念。课堂教学中渗透了数学的转化思想,数型结合思想,体现新课程标准中的知识与能力、情感与态度,过程与方法的三统一。

      三、说教法

      本节课结合七年级学生的理解能力、思维特征和依赖直观图形学*数学的年龄特征,采用多媒体辅助教学,将知识形象化、生动化、具体化,在教学中采用启发式、师生互动式等方法,充分发挥学生的主动性、积极性,特别是用三种拼图法得出三角形内角和是180°的结论,教师采用点拨的方法,启发学生主动思考,尝试用多种方法来证明这个结论,使整个课堂生动有趣,极大限度地培养了学生观察问题、发现问题、归纳问题的能力和一题多解,一题多法的创新能力,使课本知识成为学生自己的知识。

      四、说学法

      课堂中逐步设置疑问,让学生动手、动脑、动口,积极参与知识学*的全过程,渗透多观察、动脑想、大胆猜、勤钻研的研讨式学*方法,培养学生学*数学的兴趣,给学生提供更多的活动机会和空间,使学生在参与的过程中得到充足的体验和发展。

      五、说教学过程

      (一)创设情境、激**趣

      爱因斯坦说过:“问题的提出往往比解答问题更重要”,上课开始,我通过一个趣味性问题,激发学生的学*热情。在一个直角三角形里住着三个内角,老二对老大说:“你凭什么度数最大,我也要和你一样大。”老大说:“这是不可能的,否则我们这个家再也围不起来了……”。设置悬念让学生评理说理,为三兄弟排忧解难,自然导入三角形内角和的学*。

      (二)动手操作、初步感知

      提问:三角形内角和是多少?由于学生在小学学过这样的知识,所以很轻松地就可以答出。然后让学生分小组讨论:有什么办法可以验证得出这样的结论。学生会提出度量拼图的方法,然后让每个学生画出一个三角形,并将它的内角剪下,试着拼拼看。通过小组合作交流有几种拼合方法。最后教师总结共有三种拼图方法。让学生从丰富的拼图活动中发展思维的灵活性、创造性,为下一环节“说理”证明作好准备,使学生体会到数学来源于实践,同时对新知识的学*有了期待。

      (三)实践说明、深入新知

      教是为学服务的,教的最终目的是为了不教,教给学生学*方法,证明方法比单纯教学生证明更有效。教师设问:从刚才拼角的过程中,你能说出证明:“三角形内角和等于180°”这个结论的正确方法吗?⑴把你的想法与同伴交流。⑵各小组派代表展示说理方法。⑶请同学们归纳上述各种不同的方法。教师从中挑选四种方法进行讲解。通过小组讨论,让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法,从中获益,增加了学生的合作探究精神,有意识地培养学生的说理能力,逻辑推理能力,增强了语言表达能力,培养学生的一题多思,一题多解的创新精神,让学生体会数学辅助线的桥梁作用,在潜移默化中渗透了初中阶段一个重要数学思想―――转化思想,为学好初中数学打下坚实的基础。

      (四)巩固练*、拓展新知

      通过*题巩固三角形内角和知识,培养学生思维的广阔性,通过讨论一个三角形中最多有几个直角、钝角,至少有几个锐角,为学生提供充分从事数学活动的时间、空间,让学生在自主探索、合作交流的氛围中,有机会分享同学的想法,培养了学生之间良好的人际关系,拓展了三角形内角和是180°的知识外延。

      (五)启发诱导、实际运用

      出示例题,并提出了两个问题:

      1、请你结合图形解释一下题中的方位角有那几个。

      2、角ACB是哪个三角形的内角?通过例题的解析,让学生体会分析问题的基本方法,渗透初中阶段另一数学思想―――数形结合思想,使学生巩固概念加深认识,初步具备解决相关问题的能力,然后让小组交流不同的解法,培养学生思维的广阔的空间。

      (六)反馈矫正、注重参与

      通过课堂练*,强化学生对这节课的掌握,为此我设计了两道*题,第一道是开放题,这道题有助于帮助学生解决生活中的实际问题,可以激发学生学*数学的热情。第二道题采取了客观题的形式,难度中等,使学生掌握概念并能简单运用,可以提高学生的说理能力,可挑选中等成绩的学生起立回答。便于了解学生掌握的总体情况。

      六、课堂小结

      采用用先让学生归纳补充,然后教师再补充的方式进行:⑴这节课我们学了什么知识?⑵你有什么收获?充分发挥学生的主体意识,培养学生的语言概括能力。

      总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自主探究,合作学*来主动发现,实现师生互动。通过这样的教学实践取得了良好的教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学**惯,让学生学会学*,学会生活才能使自己真正成为一名受学生欢迎的好老师。

      一、说教材

      “三角形的内角和”是九年义务教育六年制小学四年级下册第六单元第3节的内容。“三角形的内角和”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步学*几何的基础。经过第一学段以及本单元的学*,学生已经具备一定的关于三角形的认识的直接经验,已具备了一些相应的三角形知识和技能,这为感受、理解、抽象“三角形的内角和”的概念,打下了坚实的基础。

      为方便教师领会教材编写的意图与理念,开展有效的教学,更好的发展学生的空间观念,培养学生的各种能力,教材在呈现教学内容时,不但重视体现知识形成的过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活的组织教学提供了清晰的思路。主要体现在:概念的形成不直接给出结论,而是提供丰富的动手实践的素材,设计思考性较强的问题,让学生通过探索、实验、发现、讨论、交流获得。从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学活动经验,发展空间观念和推理能力,不断提高自己的思维水*。基于对教材以上的认识及课程标准的要求,我拟定本节课的教学目标为:

      1、知识目标:知道三角形内角和是180°。

      2、能力目标:①通过学生猜、测、拼、折、观察等活动,培养学生探索、发现能力、观察能力和动手操作能力。②能运用三角形内角和是180°这一规律解决实际问题。

      3、情感目标:①让学生在探索活动中产生对数学的好奇心,发展学生的空间观念;②体验探索的乐趣和成功的快乐,增强学好数学的信心。

      教学重点:三角形内角和是180°的实际应用。

      教学难点:探索三角形的内角和是180°

      二、说教法

      新课程标准的基本理念就是要让学生“人人学有价值的数学”。强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。要激发学生的学*积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索,解决数学问题,发现数学规律,获得数学经验;而教师只是学生学*的组织者、引导者和合作者,在全面参与和了解学生的学*过程中起着对学生进行积极的评价,关注他们的学*方法、学*水*和情感态度,促使学生向着预定的目标发展的作用”。因此,我运用“猜一猜——量一量——拼—拼——折一折——看一看……”的教学法,让学生知道身边的数学问题随处可见,能用自己所学的知识解决生活当中的事情,培养学生的发散思维,进一步激发学生学*数学的热情。

      三、说学法

      学法是学生再生知识的法宝。为了使在整节课的探索活动中,我的设计有独立活动、二人活动及分小组活动。在具体活动中,我让学生大胆猜想,自主探索三角形的内角和是多少度?再通过测量、拼折、验证等方式让学生确定三角形内角的度数和。这样,既培养了学生的观察能力和归纳概括能力,又体现了学生动手实践、合作交流,自主探索的学*方式,同时也培养了学生探索能力和创新精神。

      “将课堂还给学生,让课堂焕发生命的活力”,“努力营造学生在教学活动中独立自主学*的时间和空间,使他们成为课堂教学中重要的参与者与创造者,落实学生的主体地位,促进学生的自主学*和探究。”秉着这样的指导思想,在整个教学设计上力求充分体现“以学生发展为本”教育理念,将教学思路拟定为“谈话激趣设疑导入——猜想——验证{自主探究}——巩固内化——拓展延伸”,努力构建探索型的课堂教学模式。

      四、说教学程序

      1、谈话激趣设疑导入:教学的艺术不在于传授知识,而在于唤醒、激发和鼓励。刚开始上课,我就以两个三角形的争论为的知识“三为切入点,让学生来评理,当一回公正的法官{激趣},你认为哪一个三角形的内角和大呢?用什么方法知道谁大谁小呢{设疑}?这样,我在很短的时间内最大限度的激发学生探究数学的愿望和兴趣,为学生进一步学*打好基础。

    [阅读全文]...

2022-04-02 00:00:00
  • 《三角形的内角和》教案10篇

  • 教案
  •   本节微课视频是苏教版数学教科书四年级下册第78~79页的教学内容。在教学之前,学生已经掌握了角的概念、角的分类和角的测量;认识了三角形,知道三角形是由三条线段首尾相接围成的图形,有三个顶点、三条边和三个角。这些已经构成学生进一步学*的认知基础。《三角形的内角和》是三角形的一个重要性质。学生在学*四年级上册“角的度量”时,通过测量三角尺三个角的度数,知道三角尺三个角加起来的和是180度,再加上课前的预*,大部分的学生已经能得出结论:三角形的内角和是180度,只不过他们不清楚其中的道理,只是机械性的记忆。因此,本节课的重点不是结论,而是验证结论的过程。教材组织学生对不同形状、不同大小的三角形的内角和进行探索,通过转化、推理、比较、操作和验证,总结概括出“所有三角形的内角和都是180度”的规律,从而进一步发展学生的空间观念,提高学生的自主学*能力和推理能力。

      下面就具体谈谈微课的教学设计:

      一、 教学目标

      1、通过测量、转化、观察和比较等活动探索发现并验证“三角形的内角和是180度”的规律,并且能利用这一结论解决求三角形中未知角的度数等实际问题。

      2、通过折一折、拼一拼和剪一剪等一系列的操作活动培养学生的联想意识和动手操作能力。体验验证结论的过程与方法,提高学生分析和解决问题的能力。

      3、使学生通过操作的过程获得发现规律的喜悦,获得成就感,从而激发学生积极主动学*数学的兴趣。

      二、 教学重点和难点

      重点:让学生亲自验证并总结出三角形的内角和是180度的结论

      难点:对不同验证方法的理解和掌握。

      三、 教学过程

      (一)质疑——发现问题,提出问题

      出示学生熟悉的一副三角尺,让学生说说每块三角尺中各个内角的度数。试着计算每块三角尺的三个内角的度数加起来的和是多少度?

      交流:不同三角尺的内角和都是一样的吗?三角尺的内角和有什么特征?

      引导学生得出三角尺的三个内角的度数和是180度。

      提问:三角尺的形状是什么三角形?三角尺的内角和是180度,我们还可以说成是什么?(得出结论:直角三角形的内角和是180度。)

      你有什么办法验证这一结论呢?(动手操作,寻找答案)

      方法一:拿出不同的直角三角形,分别测量三个内角的度数,再求和。(提示存在误差,但三个内角的和都在180度左右)

      方法二:用两个相同的直角三角形拼成一个长方形,由于长方形的四个内角和是360度,因此能得出一个直角三角形的三个内角和是180度。

      启发:直角三角形的内角和是180度,这一结论让你联想到了什么?你能提出什么新的数学问题呢?

      引导:从直角三角形的内角和联想到所有三角形的内角和,提出问题:所有三角形的内角和都是180度吗?

      (二)探究——分析问题,解决问题

      出示三个三角形:直角三角形、锐角三角形和钝角三角形。

      引导:直角三角形的内角和是180度了,由此我们联想到锐角三角形和钝角三角形的内角和也有可能是180度。

      提问:你有什么办法来验证这一猜想呢?

      拿出事先从课本第113页剪下来的3个三角形,动手操作,自主探索,发现规律。

      方法一:可以像上面那样先测量每个三角形的三个内角的度数,再计算出它们的和,看看能发现什么规律。学生测量计算,教师巡视指导。

      引导:测量时要尽量做到准确,测量是存在误差的,对于测量的不准的同学要重新测定和确认,计算出它们的和,发现其中的规律。

      方法二:既然是求三角形的内角和,我们就可以想办法把三角形的3个内角拼在一起,看看拼成了什么角。那怎样才能把3个内角拼在一起呢?我们可以将三角形中的3个内角撕下来,再拼在一起,会发现拼成了一个*角,是180度。

      方法三:把三角形的三个内角撕下来,虽然能将他们拼在一起,但是原有的三角形被破坏了。因此,我们还可以通过折一折的方法,把三个内角折过来拼在一起,同样会发现拼成一个*角,是180度。

      方法四:将锐角三角形和钝角三角形分别分成两个直角三角形,利用直角三角形内角和是180度进行推理。180+180=360度,360-90-90=180度。

      (三)归纳——获得结论

      交流:回顾以上3个三角形的内角和的探索过程,你发现了什么规律?

      总结:通过测量计算、拼一拼和折一折的方法,我们可以消除心中的问号,肯定得说出所有三角形的内角和都是180度这一结论。

      (四)拓展——巩固练*

      1、将一个大三角形剪成两个小三角形,每个小三角形的内角和是多少度?

      2、在一个三角形中,根据两个内角的度数,求第三个内角的度数?

      教学目标:

      1、让学生亲自动手,通过量、剪、拼等活动,发现并证实三角形的内角和是180°,应用三角形内角和的知识解决实际问题。

      2、让学生在动手获取知识的过程中,培养学生的创新意识,探索精神和实践能力。

      重点、难点:

      经历“三角形内角和是180°”这一知识的形成,发展和应用的全过程。

      三角形内角和是180°的探索和验证。

      教学过程:

      一、揭示课题

      1、今天我们一起来学*三角形的内角和,那什么是三角形的内角和?(三角形里面的角),它有几个内角?(三个)出示纸片,那什么又是三角形的内角和呢?(把三角形的三个角的度数加起来就是三角形的内角和)

      出示课件

      2、提出问题,为后面做铺垫。

      现在有3个三角形(出示课件),直角三角形说:“我是直角三角形,我的内角和最大”钝角三角形说:“我有一个钝角,比你们三个角都大,所以我的内角和才是最大的。锐角三角形说:“我虽然是锐角三角形,但我的个头最大,所以我的内角和才是最大的。

      孩子们,它们这样吵起来可不是办法呀!你们可知道它们谁的内角和最大呢?那我们就一起来证明给他们看。

      二、新授

      1、任意画不同的类型的三角形,算一算三个内角和是多少度。我们就画三个不同类型的三角形,算一算三个内角和是多少度,我们有三大组,为了节约时间,每一大组画一种又分几小组,三人一小组,一人画,一人量,一人记录。(小组合作,画图,量角,记录,计算)

    [阅读全文]...

2022-05-04 15:21:50
  • 《三角形的内角和》教案10篇

  • 教案
  •   教学目标:

      1. 掌握三角形内角和定理及其推论;

      2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;

      3.通过对三角形分类的学*,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。

      4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态

      5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。

      教学重点:

      三角形内角和定理及其推论。

      教学难点:

      三角形内角和定理的证明

      教学用具:

      直尺、微机

      教学方法:

      互动式,谈话法

      教学过程:

      1、创设情境,自然引入

      把问题作为教学的出发点,创设问题情境,激发学生学*兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。

      问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?

      问题2 你能用几何推理来论证得到的关系吗?

      对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学*的一个重要内容(板书课题)

      新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学*了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学*的内容自然合理。

      2、设问质疑,探究尝试

      (1)求证:三角形三个内角的和等于

      让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个*面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。

      问题1 观察:三个内角拼成了一个

      什么角?问题2 此实验给我们一个什么启示?

      (把三角形的三个内角之和转化为一个*角)

      问题3 由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?

      其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。

      (2)通过类比“三角形按边分类”,三角形按角怎样分类呢?

      学生回答后,电脑显示图表。

      (3)三角形中三个内角之和为定值

      ,那么对三角形的其它角还有哪些特殊的关系呢?问题1 直角三角形中,直角与其它两个锐角有何关系?

      问题2 三角形一个外角与它不相邻的两个内角有何关系?

      问题3 三角形一个外角与其中的.一个不相邻内角有何关系?

      其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。

      这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学**惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。

      3、三角形三个内角关系的定理及推论

      引导学生分析并严格书写解题过程

      教学目标:

      1、通过量、剪、拼、摆等直观操作的方法,让学生探索并发现三角形内角和等于180度。

      2、在活动交流中培养学生合作学*的意识和能力,让学生经历猜测探索总结的数学学*过程,在实验活动中体验探索的过程和方法。

      3、通过运用三角形内角和的性质解决一些简单的问题,使学生体会数学与现实生活的联系,体会到数学的价值,增加学生学数学的信心和兴趣。

      教学重点:

      探索发现三角形内角和等于180并能应用。

      教学难点:

      三角形内角和是180的探索和验证。

      教学过程:

      一、创设情境,提出问题

      师:大家喜欢猜谜语吗?

      生:喜欢。

    [阅读全文]...

2022-03-14 01:54:27
  • 三角形内角和教学设计菁选

  • 三角形内角和教学设计

      作为一名教学工作者,总归要编写教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。教学设计应该怎么写呢?以下是小编为大家收集的三角形内角和教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

      背景分析:

      在学*“三角形的内角和”之前,学生已经学*了三角形的特性和分类,知道*角的度数是180°,并且能够用量角器测量角的大小。“三角形的内角和是180°”是三角形的一个基本特征,也是“空间与图形”领域中的重要内容之一,学好它有助于学生理解三角形三个内角之间的关系,也为以后进一步学*几何知识打下良好的学*基础。

      教学目标:

      1、通过测量、剪拼、折拼等活动让学生全面经历探索和发现“三角形的内角和等于180°”的过程。

      2、会用“三角形的内角和等于180°”这个结论进行一些简单的计算和推理。

      3、体会数学学*的魅力,体验探究学*的乐趣。

      教学重难点:

      探索和发现三角形的内角和等于180°。

      教具准备:

      多媒体课件、一副三角板、量角器、三角形纸片。

      学具准备:

      每个小组准备4个量角器、4把剪刀、两副三角板、两个学具袋,两个学具袋中各装有2个完全相同的锐角三角形、1个直角三角形、一个钝角三角形。其中1号学具袋中,还装有表格纸一张。

      教学过程:

      一、导入课题

      1、故事引入,激发兴趣

      同学们,今天,老师给大家带来一个小故事,想听吗?

      课件显示数学家——帕斯卡的图片

      师:孩子们,你们认识他吗?这可是位了不起的人物,他的名字叫帕斯卡。他可是位数学奇人,从小就痴迷于数学,可帕斯卡的父亲却不支持他学*数学,因为,他从小就体弱多病,然而,这并不能阻挡帕斯卡对数学的热爱,一个个数学问题就像磁石一样深深地吸引着帕斯卡。他常常背着父亲一个人偷偷琢磨。12岁那年,他发现了一个改变他一生的数学问题,当父亲知道后激动的热泪盈眶。从此以后,父亲不仅支持他学*数学,而且还尽全力帮助他。在父亲的帮助下,帕斯卡成为了世界著名的数学家、物理学家。

      师:究竟是什么发现让父亲的态度发了180°的大转弯呢,想知道吗?

      揭示并板书课题:三角形的内角和。生齐读课题。

      2、明确目标

      学贵有疑,看到这个课题,你想知道些什么?或者你有什么疑问?(什么是三角形的内角和?三角形的内角和是多少度?)

      3、效果预期

      带着这些问题,我们一起走进今天的探究之旅,老师期待大家的精彩表现,大家准备好了吗?。

      〖评析〗教师用数学家生动的励志故事导入新课,从情绪上深深感染了学生,激发了学生的学*兴趣,唤起了学生的求知欲望,同时,也为数学文化的引入作了必要的铺垫。

      二、民主导学

      1、任务呈现

      (1)认识内角、内角和

      师:同学们还认识这些三角形宝宝吗?三角形按角分,能分为锐角三角形、钝角三角形、直角三角形。

      师:老师手里拿的是?(三角板)它是什么三角形?(直角三角形)老师把它打在白板上。

      师:每个三角形的里面都有3个角,我们把它们称之为三角形的内角,为了方便,我们给他们分别编上编号∠1、∠2、∠3,

      师:请同学们拿出2号袋中的三角形,快速找出三角形的三个内角,然后像老师这样给他们分别标上∠1、∠2、∠3

      师:这个三角板上的三个内角分别是多少度呢?现在我们把这三个内角的度数加起来是(180°),算得真快,也就是说这个三角形的内角和180°这个三角形的内角和呢?也是180°也就是这两个三角形的内角和都是180°。

      师:请大家看这里,如果把这个三角形的三个内角搬个家,都搬到一起,能拼成我们学过的什么叫?(*角)*角是多少度?(180°)

      师:这是我们学过的特殊三角形,对吧,那么像黑板上这些一般的三角形内角和会是多少度呢?我们先来猜想一下好不好?谁来猜?同学们都认为三角形的内角和是180°,但口说无凭呀,到底是不是180°我们应该验证一下,对吧?

      师:我们现在开始验证好吗?动手之前,请听好活动要求

      屏幕出示要求,指名学生读:

      想一想,你打算怎样验证,在小组内交流你的想法,共同确定一种验证方法;

      想用量的方法验证的小组,请取出1号袋中的表格和三角形,根据表格上的内容完成相应的测量、计算,并向小组长汇报,小组长负责填空汇总;

      想用其它方法验证的小组,请取出2号袋中的三角形,小组长做好分工,每两个同学用一个三角形进行验证或一人单独验证,动手前,先讨论讨论该怎么做,然后试着拼一拼;

      验证结束后,小组内交流你们的发现,回忆验证过程,做好汇报准备。

      2、自主学*

      学生分组活动,教师巡视指导。(用量的方法的要填写学具袋中的表格)

      3、展示交流(提示:汇报时,要说清楚你研究的三角形的类型)

      师:来吧孩子们,该到全班交流的时候了。哪个小组愿意先把你们的成果与大家一起分享。

      A、剪拼法(撕拼法)

      这个小组通过剪拼得出三角形的内角和是180

      B、折拼法

      刚才拼的过程中,老师发现有个孩子特别的难过,因为他觉得这些三角形宝宝太可怜了,我们把这些三角形宝宝都大卸三块儿了,的确是这样,现在动脑筋想想,在不破坏三角形的情况下,能不能想办法把三角形的三个内角弄成一个*角?(折)那你们就试试,(行,不行)到底行不行,老师给大家演示一下,先标出三个内角,把∠1折下来,把∠2、∠3分别靠过来,现在观察一下,这三个角通过折的方法拼成*角了吗?行还是不行,刚才说不行的孩子一定没按这种方法折,下面请按老师的方法试试

    [阅读全文]...

2023-03-10 00:00:00
  • 《三角形内角和》教学反思3篇

  • 教学反思
  •   一、设计思路:

      这节课是上“三角形内角和”,因为学生对三角尺上每个角的度数比较熟悉,就从这里入手。先让学生算出一块三角尺三个内角的和是180°,引发学生的猜想:其它三角形的内角和也是180°吗?接着,引导学生任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接*180°,再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个*角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”数学思想,为后继学*奠定了必要的基础。最后让学生运用结论解决实际问题,练*的安排上,注意练*层次,共安排三个层次,逐步加深。在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。

      二、教学反思

      这篇教学设计通过施教,符合新课程理念,转变学生的学*方式,能让学生以小组合作的形式进行问题的探索与研究,学生在整节课中学得轻松。整节课的教学设计,条理清晰,层次清楚,教学一开始从学生熟悉的三角板抽象出特殊的三角形探讨三角形的内角和是180°,接下来很自然地引导学生探讨所有的三角形的内角和是不是也是180,过渡自然且有吸引力。

      但在学*活动的过程中,首先我觉得语言不够生动、连贯,声音也很小。其次,学生在进行操作活动前,我也没有明确说明操作方法,使学生不理解操作的用意,也没有让学生在操作中真正证实“三角形的内角和是180°”的结论。最后,对三角形内角和的归纳也没有完整,等等

      总之,在这节课中存在着很多不足,今后我将花更多的时间在课堂教学方法、策略的研究上,使自己不断进步。

      “三角形内角和”是人教版数学四年级下册的一节探索与发现课,让学生在学*了三角形的特征、高以及三角形分类的基础上,进一步研究三角形三个角的关系。本节课学生对知识点的掌握还不错,但是,这一节课还有很多不足之处,需要加以改进:

      一、优点:

      1、教学设计不错,环节紧凑,思路清晰。

      2、重视操作过程,时间把握得好。本节课用了大量的时间来让学生做小组实验,从而让他们自己感知三角形内角和是180°,印象深刻。

      3、能注意前后照应,解决了前面的疑问。在讲授新课前,设置一个疑问“为什么同一个三角形不能有两个直角?”以此来吸引学生,找出三角形内角和的特性。在掌握了三角形内角和是180°后,再次把问题提出来,让学生解决。

      4、板书巧妙,一步步引入课题。先是让学生复*“三角形”的定义,接着简单说明什么是“三角形内角”,最后再讲授三角形三个内角度数的和叫做“三角形内角和”。

      5、课堂纪律好,气氛活跃,学生踊跃积极。学生在小组活动时,活跃而有序,上课时能认真听讲,积极举手。同时,实行小组评价更是发挥了学生的主动性。

      6、求三角形内角和的方法,一个比一个直观、生动。从量一量、算一算,到剪一剪、折一折,让学生更容易感受到三角形内角和是180°。

      7、练*题设计得比较好,特别是判断题,都是学生*时容易出错的题目,在课堂上用比较直观的课件显示出来,让学生的印象深刻。组合题也很有灵活性,先是找出能组成三角形的度数,然后根据度数判断出是什么三角形。

      8、能尊重学生的意见,有的小组没有在算一算的时候,没有得出180°的结果,老师能够分析其中的原因。

      二、不足之处:

      1、在老师给出“画有2个内角是直角的.三角形”的任务时,学生明显是画不出来。但是教师也可以把学生失败的作品展示出来,照应之后的讲解。而不能一带而过。

      2、如果量一量的方法,不能让人信服,要在后面打个“?”,等到解决疑问后,再去掉。

      3、在进行剪一剪、折一折的活动时,老师应该先用板书上的三角形来示范一次,告诉学生应该怎么做。因为有些学生折不出来。拼的时候,也有出错。

      4、把三角形拼成*角后,要用直尺或者是量角器测量一下,看看得出的图形是不是*角,要用严谨的态度对待,不能光用眼睛来判断。

      5、老师注意提醒学生读题的时候要规范,要读出度数单位,这很好。但是,在做题练*时,应该请一两个学生在黑板上做,这样也便于教师提醒学生,在书写时,也要注意写上度数单位,强调格式。

      这节课作为四年级下册中三角形的一个重要组成部分,它是学生学*三角形内角关系和其它多边形内角和的基础。即使在以前没有这部分内容,大部分教师在课后也会告诉学生三角形的内角和是180度,学生容易记住。本节课我具体抓住以下2个方面。

      1、为学生营造了探究的情境。在数学教学中,教师应提供给学生一种自我探索、自我思考、自我创造、自我表现和自我实现的实践机会,使学生最大限度的投入到观察、思考、操作、探究的活动中。教学中,我在引出课题后,引导学生自己提出问题并理解内角与内角和的概念。在学生猜测的基础上,再引导学生通过探究活动来验证自己的观点是否正确。当学生有困难时,教师也参与学生的研究,适当进行点拨。并充分进行交流反馈。给学生创造了一个宽松和谐的探究氛围。

      2、充分调动各种感官动手操作,享受数学学*的快乐。在验证三角形的内角和是180度的过程当中,大部份同学都是用度量的方法,此时,我引导学生:180度是什么角?我们能否把三个内角转化一下呢?经过这么一提示,出现了很多种方法,有的是把三个角剪下来拼成一个*角。有的用两个大小相等的直角三角形拼成一个正方形,还有的是用折纸的方法,极大地调动了大脑,就连*时对数学不感兴趣的学生也置身其中。充分让学生进行动手操作,享受数学学*的乐趣。

      一、教学现状的思考。

      我从知识与技能,教学过程与方法,情感态度价值观三方面拟定了本节课的教学目标:

      1、通过量一量算一算拼一拼折一折的小组活动的方法,探索发现验证三角形内角和等于180°,并能应用这一知识解决一些简单问题。

      2、通过把三角形的内角和转化为*角进行探究实验,渗透"转化"的数学思想。

      3、通过数学活动使学生获得成功的体验,增强自信心。培养学生的创新意识,探索精神和实践能力。

      (三)教学重,难点

      因为学生已经掌握了三角形的概念,分类,熟悉了钝角,锐角,*角这些角的知识。对于三角形的内角和是多少度,学生并不陌生,也有提前预*的*惯,学生几乎都能回答出三角形的内角和是180°。在整个过程中学生要了解的是"内角"的概念,如何验证得出三角形的内角和是180°。因此本节课我提出的教学的重点是:验证三角形的内角和是180°。

      二,说教法,学法。

      本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,选择不同的一种或者几种方法来验证三角形的内角和是180°。

      因为《课程标准》明确指出:"要结合有关内容的教学,引导学生进行观察,操作,猜想,培养学生初步的思维能力"。四年级学生经过第一学段以及本单元的学*,已经掌握了三角形的分类,比较熟悉*角等有关知识;具备了初步的动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从"猜测――验证"展开学*活动,让学生感受这种重要的数学思维方式。

      三,说教学过程

      我以引入,猜测,证实,深化和应用五个活动环节为主线,让学生通过自主探究学*进行数学的思考过程,积累数学活动经验。

      (一)引入

      呈现情境:出示多个已学的*面图形,让学生认识什么是"内角"。(把图形中相邻两边的夹角称为内角)长方形有几个内角(四个)它的内角有什么特点(都是直角)这四个内角的和是多少(360°)三角形有几个内角呢从而引入课题。

      【设计意图】让学生整体感知三角形内角和的知识,这样的教学,将三角形内角和置于*面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的"横空出

      (二)猜测

      提出问题:长方形内角和是360°,那么三角形内角和是多少呢

      【设计意图】引导学生提出合理猜测:三角形的内角和是180°。

      (三)验证

      (1)量:请学生每人画一个自己喜欢的三角形,接着用量角器量一量,然后把这三个内角的度数加起来算一算,看看得出的三角形的内角和是多少度

      (2)撕―拼:利用*角是180°这一特点,启发学生能否也把三角形的三个内角撕下来拼在一起,成为一个*角请学生同桌合作,从学具中选出一个三角形,撕下来拼一拼。

      (3)折—拼:把三角形的三个内角都向内折,把这三个内角拼组成一个*角,一个*角是180°,所以得出三角形的内角和是180°。

      (4)画:根据长方形的内角和来验证三角形内角和是180°。

      一个长方形有4个直角,每个直角90°,那么长方形的内角和就是360°,每个长方形都可以*均分成两个直角三角形,每个直角三角形的内角和就是180°。从长方形的内角和联想到直角三角形的内角和是180°。

      【设计意图】利用已经学过的知识构建新的数学知识,这不仅有助于学生理解新的知识,而且是一种非常重要的学*方法。在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与*角,长方形四个内角的和等知识联系起来,并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系。在整个探索过程中,学生积极思考并大胆发言,他们的创造性思维得到了充分发挥。

      (四)深化

    [阅读全文]...

2022-04-02 00:00:00
  • 《三角形内角和》数学教案10篇

  • 数学教案
  •   尊敬的各位评委老师:

      大家好!今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:

      一、教材分析

      “三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学*几何的基础。

      二、教学目标

      1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。

      2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。

      3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。

      三、教学重难点

      教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。

      教学难点:采用多种途径验证三角形的内角和是180°。

      四、学情分析

      通过前面的学*,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。

      五、教学法分析

      本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。领悟转化思想在解决问题中的应用。

      六、课前准备

      1、教师准备:多媒体课件、三角形教具。

      2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。

      七、教学过程

      (一)、创设情境,激趣导入

      导入:“同学们,有三位老朋友已经恭候我们多时了。“(出示三角形动画课件),让学生依次说出各是什么三角形。

      课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的内角和。请学生画一个三角形,要求:有两个直角。为什么不能画,问题在哪呢?这节课我们就一起来探究三角形的内角和。板书课题。

      (二)、自主探究、合作交流

      1、探索特殊三角形内角和

      拿出自己的一副三角板,同桌之间互相说一说各个角的度数。

      三角形内角和是多少度呢?指名汇报。90°+30°+60°=180°

      90°+45°+45°=180°

      从刚才两个三角形内角和的计算中,你发现了什么?

      2、探索一般三角形的内角和

      一般三角形的内角和是多少度?猜一猜。你们能想办法证明吗?接下来,我们采用小组合作的方式进行探究,看看哪个组的方法多而且富有新意。

      3、汇报交流

      请小组代表汇报方法。

      1)量:你测量的三个内角分别是多少度?和呢?(有不同意见)

      没有统一的结果,有没有其他方法?

      2)剪―拼:把三角形的三个内角剪下来拼在一起,成为一个*角,利用*角是180°这一特点,得出结论。(学生尝试验证)

      3)折拼:学生边演示边汇报。把三角形的三个内角都向内折,把这三个内角拼组成一个*角。所以得出三角形的内角和是180°。(学生尝试验证)

      4)教师课件验证结果。

      请看屏幕,老师也来验证一下,是不是和你们的结果一样?播放课件。我们可以得到一个怎样的结论?

      学生回答后教师板书:三角形的内角和是180°

      为什么有的小组用测量的方法不能得到180°?(误差)

      4、验证深化

      质疑:大小不同的三角形,它们的内角和会是一样吗?(一样)

      谁能说一说不能画出有两个直角的三角形的原因?

      (三)、应用规律,解决问题:

      揭示规律后,学生要掌握知识,就要通过解答实际问题。

      1、为了让学生积极参与,我设计了闯关的活动来激励学生的兴趣。闯关成功会获得小奖章。

      第一关:基础练*,要求学生利用“三角形内角和是180°”这一规律在三角形内已知两个角,求第三个角(课件出示)

      第二关,提高练*,

      ①已知等腰三角形的底角,求顶角。②求等边三角形每个角的度数是多少。直角三角形已知一个锐角,求另一个。

      让学生灵活应用隐含条件来解决问题,进一步提高能力。

      2、小组合作练*,完成相应做一做。

    [阅读全文]...

2022-02-09 04:06:51
  • 《三角形内角和》教学设计10篇

  • 教学设计
  •   教学内容:

      教材第67页例6、“做一做”及教材第69页练*十六第1~3题。

      教学目标:

      1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。

      2.能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。

      3.培养学生动手动脑及分析推理能力。

      重点难点:

      掌握三角形的内角和是180°。

      教学准备:

      三角形卡片、量角器、直尺。

      导学过程

      一、复*

      1、什么是*角?*角是多少度?

      2、计算角的度数。

      3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)

      二、新知

      (设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知” 的道理,这样的教学,将三角形内角和置于*面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)

      1、读学卡的学*目标、任务目标,做到心里有数。

      2、揭题:课件演示什么是三角形的内角和。

      3、猜想:三角形的内角和是多少度。

      4、验证:

      (1)初证:用一副三角板说明直角三角形的内角和是180°。

      (2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。

      (3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和 是180°(师巡视)

      (4)汇报结论(清楚明白的给小组加优秀10分)

      5、结论:修改板书,把“?”去掉,写“是”。

      6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)

      7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)

      三、知识运用(课件出示练*题,生解答)

      1、填空

      (1)一个三角形,它的两个内角度数之和是110 ,第三个内角是( ).

      (2)一个直角三角形的一个锐角是50,则另一个锐角是( )。

      (3)等边三角形的3个内角都是( )。

      (4)一个等腰三角形,它的一个底角是50,那么它的顶角是( )。

      (5)一个等腰三角形的顶角是60,这个三角形也是( )三角形。

      2、判断

      (1)一个三角形中最多有两个直角。 ( )

      (2)锐角三角形任意两个内角的和大于90。 ( )

      (3)有一个角是60的等腰三角形不一定是等边三角形。 ( )

      (4)三角形任意两个内角的和都大于第三个内角。 ( )

      (5)直角三角形中的两个锐角的和等于90。 ( )

      四、拓展探究

      根据所学的知识,你能想办法求出四边形、五边形的内角和吗?

      1、小组讨论。2、汇报结果。3、课件提示帮助理解。

      五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。

      六、谈谈自己本节课的收获。

      教学反思

      今天我讲了《三角形内角和》这部分内容,学生其实通过不同途径已经知道三角形内角和是180°,是不是说这节课的重难点就已经突破了,只要学生能应用知识解决问题就算是达到这节课的教学目标了呢?我想应该好好思考教材背后要传递的东西。

      任何规律的发现都要经过一个猜测、验证的过程,不经历这个探究的过程,学生对于这一内容的认识就不深刻,聪明的孩子还会怀疑三角形内角和是180°吗?。因此这个结论必须由实践操作得出结论。所以最终我把本课定为一个实践探究课。

      如何开篇点题,是我这次要解决的第一个问题。怎样才能让学生由已知顺利转向对未知的探求,怎样直接转向研究三个角的“和”的问题呢?因此我只设计了三个简单的问题然学生快速进入主题。

      如何验证内角和是180°,是我一直比较纠结的环节。由于小学生的知识背景有限,无法利用证明给予严格的验证。只能通过动手操作、空间想象来让孩子体会,这些都有“实验”的特点,那么就都会有误差,其实都无法严格的证明。但是这节课我们除了要尊重知识的严谨还应该尊重孩子的认知。如果通过剪拼、折叠、想象后,还有的孩子认为三角形内角和是180°值得怀疑的话,这无非也是件好事,说明孩子体会到了这些方法的不严谨,同时对知识有一种尊重,对自己的操作结果充满自信,否则拼个差不多也可以简单的认同了内角和是180°。

    [阅读全文]...

2022-01-14 04:14:12