关于《长方体和正方体的表面积》数学教学反思的文字专题页,提供各类与《长方体和正方体的表面积》数学教学反思相关的句子数据。我们整理了与《长方体和正方体的表面积》数学教学反思相关的大量文字资料,以各种维度呈现供您参考。如果《长方体和正方体的表面积》数学教学反思未能满足您的需求,请善用搜索找到更适合的句子语录。
《长方体和正方体的表面积》是在学生认识并掌握了长方体、正方体特征的基础上教学的,也是学生学*几何知识由*面计算扩展到立体计算的开始,是本单元的重要内容。学生对旧知识已经有了一定的积累,但空间思维还没有真正形成。为了使学生更好地建立表面积的概念和计算方法,应加强动手操作,按照创设情境——实践操作——自主探究——掌握规律的教学流程进行设计教学方案。本节课教学本着“让学生自主探究活动贯穿于课的始终”的原则,让学生充分自主学*、研究、讨论、操作,从而得出结论,激发了学生的学*兴趣,培养了学生思维能力和实践操作能力。
1、以人为本,以学生发展为本
这节课是在认识长方体、正方体特征的基础上进行教学的。整个教学过程是:从实际出发设置情境提出问题——引出表面积概念——当直觉无法判断时需要计算表面积——学生尝试求表面积——总结求表面积的方法、条件和规律——学生独立解决正方体表面积——应用知识,解决问题。这样设计,层次清楚、结构严谨、学生主动建构,积极回忆联想,使教材结构与学生的认知结构达到和谐的统一,真正做到“凡学生能想的,应该认学生自己去想”,从而使学生在获得真知的同时,也学会了怎样学*,个性得到了充分的发展。整堂课学生动手实践操作,合作讨论交流,积极主动参与探究,体现了“以人为本,以学生发展为本”的新理念。
2、注重多种教学手段优化组合,培养学生的空间观念
培养学生的空间念是空间与图形教学的重要任务,而求长方体表面积必须具备长方体每个面是由哪两条棱相乘的空间观念,这是教学的难点。为此,教师在教学中一方面充分运用电教手段,精心设计各种投影片(立体图),在投影片上用不同的颜色有规律地衬托出不同面的位置以及面与棱的关系,从而较好地化抽象为具体,克服了学生空间想象中的困难;另一方面,教师引导学生观察实物、立体图,将纸盒展开再还原整合,动手触摸长方体的面与棱等,也有效地增加了学生的空间观念,为独立探索长方体表面积打下了扎实的基础。
通过这节课,我体会到教学方法、途径是各种各样的,教师自己要摒弃唯上、唯师、唯本的传统理念,不迷信静态的教材和传统的经验,将"已完成"的数学当成"未完成"的数学来教,使教师自身思维放开,富于创新。
其次,不要以自身**的眼光看待学生的思维,而应"蹲下身子",以儿童的眼光去欣赏数学,接纳学生的不同意见。尤其是对于学生"异想天开"的答案,不要过早作出简单的判断,更不能嘲笑、讥讽学生,而应耐心倾听,积极肯定,小心呵护学生刚刚萌发的创新意识。
再次,教学不应围着自己的"教"转,应多为学生的"学"服务。应积极倡导延迟评价,多给学生表达自我的机会,尤其是当学生的答案"离奇古怪"时,教师不应急于主观猜测、简单评价,草率收场,而应真诚地多问几个"为什么?""你是怎样想的?"或许学生富有个性化的火花就会随之迸发而出。这时你会惊叹,学生的创造潜能是难以估量的,而课堂也会因学生丰富多彩的答案而变得精彩。
《长方体的表面积》是北师大版小学数学五年级下册的内容,这部分知识的教学是在学生认识并掌握了长方体、正方体特征的基础上教学的,也是学生学*几何知识由*面计算扩展到立体计算的开始,是本单元的重要内容。本节课的重点就是理解表面积的概念及掌握表面积的计算方法。学生对旧知识已经有了一定的积累,但空间思维还没有真正形成的。为了使学生更好地建立表面积的概念和计算方法,应加强动手操作和直观演示,按照引入情境——自主探究——掌握规律的教学思路设计教学方案。本节课教学本着“结合实际、本本真真”的原则,让学生充分自主学*、讨论、操作,从而得出结论,激发了学生的学*兴趣,培养了学生思维能力和实践操作能力。
一、创设情境,引入新知
《新课程标准》指出:在教学中要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学*情境,让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与与技能。开课时我用长方体的实际的学具引入新课,讲明长方体有六个面,老师想知道长方体的六个面到底有多大,请你利用小组中的学具帮助老师解决。学生通过思考与交流,认识到“要想知道长方体的六个面到底有多大,必须计算出六个面的面积总和”,这时我因势利导指出:“长方体六个面的面积之和叫做它的表面积”,然后再让学生摸一摸、说一说。这样设计既能刺激学生产生好奇心,又能唤起学生强烈的参与意识,产生学*的需要,使学生在自主的观察与思考中理解了表面积的意义,为探索长方体和正方体表面积的计算打下了良好的基础。
二、实践操作,合作探究
数学知识具有高度的抽象性,我要引导学生在操作中思考,促进学生思维发展。在教学长方体表面积计算方法时,我先让学生动手操作,以长方体学具为依据,学生在动手操作的过程中,通过比较更为深刻地认识了长方体的特征,抓住了长方体表面积计算方法的关键,然后让学生在小组活动中通过说一说、算一算等方法,共同探索出长方体表面积的计算方法。在这里鼓励学生有不同方法,培养了学生的求异思维。学生在掌握了正方体的特征后,可以在学*的过程中很自然地发现了正方体表面积的计算方法,这样,改变了以往将正方体的表面积独立用一单位时间教学的方法这样既节省了时间,又培养了学生优化思维和求异思维的能力,促进课堂效益的提高。
三、联系生活,由浅入深
在学生掌握了长方体表面积的计算方法后,利用所学知识解决一些实际的问题。使学生在愉快的气氛中,在师生共同参与和评价中完成练*训练,达到由浅入深、推陈出新的效果,并从中感受到学*的乐趣。
数学来源于生活,同时又服务于生活。应用学到的知识解决实际生活中的问题,不但能使学生感受数学与实际生活是密切联系的,而且能培养学生的创新精神。为此,我出示了以下几种情况的练*:(1)无盖的玻璃鱼缸(2)四个面的沉箱。使学生认识到长、正方体的表面积也会遇到许多特殊情况,我们求表面积不可以千篇一律要根据实际情况具体问题具体分析。
四、不足之处
1、部分学困生还是没有完全照顾到。因为是从*面到立体,从二维到三维,**看似简单,而对小学生却有一定的难度。如果
在课堂上我能够抓住学生实践的过程适时把展开的*面图做出点拨效果会更好。
2、有些学生缺乏空间想象力,还是分不清楚具体的面应该怎样求才是它的面积,而且学生缺乏耐心细致,做不到具体情况具体分析,因此在解决实际问题时,失误较多。在今后的教学中我应注重通过观察物体、认识方向、制作模型、设计图案等活动,发展学生的空间观念。
这节课对我来说是一次挑战也是一次机会,它也给我带来了更多的思考。无论对老师还是学生都需要知道结论,而相对来说更重要的`还是经历过程。一次经历、一次反思、一次锻炼、一次提高!
“长方体和正方体的表面积”是在学生已经掌握了一些简单的*面图形知识和把长方体、正方体的立体图形展开的*面基础上,过渡到初步的立体图形上学*的。本节课的学*目标是让学生进一步认识长方体和正方体的特征,掌握长方体和正方体表面积的计算,体现“立体——*面——立体”循序渐进的教学思想,并通过展形的*面图形和立体图形的联系,培养和发展学生初步的空间想象能力。新课标强调学生的学*过程是一个活动过程,因此在小学数学课堂教学中,引导学生主动参与,自主探索,锤炼思维,培养能力,发展智力。所以“长方体和正方体的表面积”一课,就从这一思路出发预设、生成教学过程。
一、从生活实际引入新课
一个好的情境可以吸引学生的注意力,有利于激发学生的学*兴趣和愿望,使学生处于积极主动的学*状态,有利于学生自主探索。新课标强调“要让学生在现实情境中和已有知识的基础上体验和理解数学知识”“要提供丰实的现实背景”任何知识源于生活又服务于生活。生活中处处有数学,让现实的生活数学走进学生视野,使生活数学与数学问题有机地结合起来,使学生体会在生活中做数学的乐趣。在教学中我设计为捐款箱包装外表,让学生明确学*求长方体、正方体表面积的必要性,以激发学生的求知欲。
二、积极实践操作,以动激思
数学知识具有高度的抽象性,所以我们要多引导学生在操作中思考加工,培养技能技巧,促进思维发展。因此,在教学长方体表面积计算方法时,我打算先让学生动手操作,“解剖”以长方体,展示出6个面。通过比较分析深刻地体会长方体各个面积之各就是这个长方体的表面积,以及长方体6个面之间的关系,抓住了推导长方体表面积计算方法的关键,然后再让学生测出自己的长方体的长、宽、高,通过小组合作共同探索出长方体表面积的计算方法。设计是如此,但在教学中因为担心把学生一放开就收不拢完不成教学任务,所以就临时改变了教学方法,由教师统一指引下进行学*,使“以动激思”变成了“以师为主”。
三、以练带学,自主学*
在学生掌握了长方体表面积的计算方法后,不单独安排时间推导正方体表面积的计算方法,而是设计了一道练*,让学生自主学*,由学生在算式说意义的过程中很自然地发现了正方体表面积的计算方法,这样既节省了时间,又培养了学生优化思维和求异思维的能力,促进课堂效益的提高,也使学生在愉快的气氛中,在师生共同参与和评价中,达到优化思维,推陈出新的效果,并从中感受到学*的乐趣。
本节课的目的是让学生通过实践活动,探索并掌握长方体、正方体体积的计算方法,图在观察、操作、探索的过程中,提高动手操作能力,进一步发展学生的空间观念。因此课一开始,我并没有设置“漂亮”的教学情境,而是在学生用数方块的方法得出几个立体图形体积的基础上,数出小长方体的体积,目的有二:一是抛弃繁索的动作,直奔中心;二是快速刺激学生的探索欲望。果然,课上学生的兴趣快速激起,为后面的探索活动提供了足够的情感准备,并羸得了充分的操作探索时间。
本节课,我最满意的是长方体和正方体体积的探索过程及结果。由于在前几节课拼搭立体图形中,学生曾用8块小正方块既搭出了长方体也搭出了正方体,因此在本节课中,有好几个小组的学生通过同一次的操作活动,就能同时得出长方体和正方体的体积计算公式,并且正确地阐述了原因——正方体是特殊的长方体。同时学生能根据长方体与正方体的关系——正方体是长、宽、高都相等的长方体,进一步的揭示了正方体的体积=棱长×棱长×棱长与长方体的体积=长×宽×高之间的联系与区别。在这一个环节的操作探索活动中,学生通过数据的记录与分析,发现长方体体积与长、宽、高之间的关系,知道了求长(正)方体体积所必需具备的条件,并根据数据抽象归纳出体积公式,这当中不仅提高了学生的动手操作能力,也发展了学生的分析概括能力。同时在整个的观察、操作、探索的过程中,更进一步地理解与掌握长方体与正方体之间的联系与区别,有助于知识体系的重组与构建,学生的空间观念也得到了进一步的发展,这也是本节课的意图之一。
不足之处是练*的安排,应该更有层次和梯度,使学生在理解基础知识和掌握基本技能的基础上,在适当有些拓展,提高课堂四十分钟的效率,提高学生分析问题和解决问题的能力。
出示例5:一个长方体玻璃鱼缸,长5分米,宽3分米,高3.5分米。制作这个鱼缸至少需要玻璃多少*方分米?(鱼缸的上面没有玻璃)
一起分析题意后,学生列式计算。
生1:先算出6个面的总面积,再减去上面的面积。(5×3.5+3×3.5+5×3)×2-5×3
生2:先求出前后、左右、下面的面积,再相加。式子是:5×3.5×2+3×3.5×2+5×3
生3:我的方法和刚才的基本相同,列式上可以再简单些:(5×3.5+3×3.5)×2+5×3
三种方法都交流完后,我本以为就到此为止了,但我班的数学课代表举手了,他说:“我还有方法”。
我一楞,心想,方法不是都讲完了吗?怎么还有?但我还是叫起了他,想让他说说。
他说:我从生3的方法上想到了一个更为简便的式子:(5+3)×3.5×2+5×3
咦?这不是把生3的式子运用乘法分配律而得到的吗?这个式子每一步会有具体的含义吗?
我一抛出这个问题,该生起初一楞,当时只顾着寻求不同的列式却没考虑意思,现在一时间回答不上来了。
但其余同学被他的思路启发后,思维一下子打开了。
一位学生解释道:底面先不看,如果沿着高将玻璃缸展开,会变成一个长方形,这个长方形的长就是原长方体长加宽的和的2倍,这个长方形的宽就是原长方体的高,所以这个长方形的面积就是(5+3)×3.5×2,再加上一个底面积,就可以列成(5+3)×3.5×2+5×3的式子了。
该学生解释,我配合着画图,在图形的帮助下,众学生豁然开朗。
[反思]多好的思路,多好的解释!我庆幸没为自己的卤莽而抹杀了一个创新的方法,我也为自己课前预设的不够周全而后悔。在之后的教学中,我发现用这种方法的地方有很多,如在教学完例5后的练一练的第1题:一个长方体饼干盒,长17厘米,宽11厘米,高22厘米。如果在它的侧面贴一圈商标纸,这张商标纸的面积至少有多少*方厘米?这道题也可以用(17+11)×2×22的方法来做,且比较简单。在今后的教学中,教师还得用心去细细研读教材,逐一分析每一道题,力求做到预设全方位。
本课是在学生认识掌握了长方体和正方体特征的基础上教学的。教学的难点在于,学生往往因不能根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少,以至在计算中出现错误。针对这一点,我在教学中给学生更多的动手操作实验与实践的空间,让学生通过看一看,摸一摸等来认识概念,理解概念。
首先让每个学生准备一个长方体纸盒,把纸盒沿着棱剪开(纸盒粘接处多余的部分要剪掉),再展开,让学生注意展开前长方体的每个面,在展开后是哪个面。为了便于对照,让学生在展开后的每个面上,分别用“上”、“下”、“前”、“后”、“左”“右”标明他们分别是原来长方体的哪个面。然后,提问:长方体有几个面?哪些面的面积是相等的?引导学生联系长方体的特征回答。这里关键是根据长方体的长、宽、高,正确的判断每个面的长和宽应该是多少。让学生按照上、下、前、后、左、右的顺序,依次说出每个面的面积怎样算的。
我在设计《长方体和正方体的表面积》这节课时,主要是沿着什么是长方体的表面积——怎样求长方体的表面积——为什么求长方体的表面积这样一条线来安排教学的。在教学实践中,我发现对教材的深度钻研和对学生的预设显得尤为重要。课前在预设学生求长方体的表面积时,我只考虑到学生可能会出现三种情况:一个面一个面的面积依次相加;二个面二个面的一对对相加;先求出三个面的面积再乘以2;还可以把侧面的四个面展开看成一个长方形求面积,再加上上下两个面的面积的巧妙方法却没有考虑到。实际生成时,学生只说出了其中的一种简便情况,通过引导学生能找出其他的方法。对于长方体、正方体表面积公式的归纳,学生和我也只总结出了文字公式,还应简化成字母公式,便于记忆和书写。
实践表明,只有深入研究、充分预设的课堂教学才能使不同学生得到不同的发展,才可能出现意外的惊喜和美丽的风景。以后教学中我将在课前加大研讨、分析力度,提高课堂教学实效性。
【教学实录】
(一)创设情境,提出问题
师:(电脑出示饼干盒、木箱)这两个物体大家认识吗?它们分别是什么体?
生1:饼干盒是长方体。
生2:木箱是正方体。
师:对于长方体和正方体你们已经知道了什么?
生1:长方体和正方体都有6个面,12条棱,8个顶点。
生2:长方体相对面的面积相等。
生3:长方体的每个面都是长方形,可能有两个相对面是正方形。
生4:正方形的6个面的面积相等。
……
师:同学们知道的可真多,那对于这两个物体你还想知道什么?
生1:我想知道它们的12条棱共有多长?
生2:我想知道它们的面积是多少?
……
师:同学们想知道的可真多,我们今天先来研究长方体和正方体的表面积好吗?(板书课题)
(二)探究
1、表面积的意义
师:那什么叫做长方体和正方体的表面积?
(拿出饼干盒、木箱)谁愿意上来摸一摸,并说说什么是它们的表面积?
生1:(边摸边说)长方体6个面的和是它的表面积。
生2:(边摸边说)正方体6个面的和是它的表面积。
师:(电脑演示长方体、正方体展开的过程)长方体和正方体6个面的总面积叫做它们的表面积。
师:现在知道了长方体和正方体6个面的总面积,就叫做她们的表面积。我们身边还有许多物体,你能举例说说它们的表面积吗?
生1:课本是长方体,它6个面的面积和是它的表面积。(边说边摸)
生2:橡皮的6个面的面积和是它的表面积。(边说边摸)
……
师:老师这里也有两个物体(出示无盖杯子和香皂盒),这两个物体的表面积在哪里?谁愿意上来摸一摸。
(指名学生上来边摸边说)
师:象这些物体几个面的总面积,就叫做它们的表面积。
2、表面积的计算
(1)一般长方体的表面积计算
师:现在我们知道了什么叫做物体的表面积,(拿出1号长方体木块)请同学们猜猜这个长方体的表面积可能会和它的什么有关?
生1:可能和长方体的棱长有关。
生2:可能和它的长、宽、高有关。
师:那请大家再猜猜它的表面积大概会是多少?
生1:74*方厘米。
生2:90*方厘米。
生3:120*方厘米。
……
师:那这个长方体的表面积到底会是多少呢?你们敢自己去探究它的表面积吗?
生:敢。
师:真勇敢,那请同学们拿出1号物体独立思考一下,求它的表面积需要测量它的哪几条棱,怎样计算3的表面积,好吗?然后再开始研究,研究时做好记录,完成表格,如果自己研究有困难,可以和小组里的同学一起研究。
数据记录计算方法
长方体长:
宽:
高:
《长方体和正方体的表面积》这节课是在学*了长方体和正方体的特征,长方体和正方体的展开图的基础上进行的。也就是学生已经对长方体特征及其展开图有了较深的了解基础上,学*长方体的表面积及其计算的。因此,在本节课的教学中以学生自主探索为主,教师适时点拨。
这节课的重点是理解长方体(正方体)的表面积概念及其计算方法,并能正确计算;难点是正确建立表面积的概念.计算长方体表面积的关键是找出每个面的边长(长和宽)。上课的时候直接揭题并板书本节课的内容。然后学生完成书第8页的第一题,通过这题,学生了解长方体的长、宽、高与各边之间的关系,为计算各个面的面积作了准备。学生已有了一定的知识准备,但不能上升到公式化的高度。这时,通过例4的学*后,学生根据前面的知识,就归纳出长方体的表面的计算,可以用长方体的长、宽、高来表示出来。这节课的学*达到了本节课的教学要求。但在一些细节方面还需要做改正:如对长方体表面的概念这一环节的教学,在讲完这个概念后,应该让学生拿出他们的长方体纸盒来摸摸以加深理解和印象,有在归纳出长方体表面的公式后,应该回到一开始的图上,让学生说一说每一部分求什么,以达到加深学生理解的目的,这些都是在以后备课和上课中要注意和更细致一些的地方。
本节课的内容是在学生已经学*了面积和面积单位、长方体和正方体特征的基础上进行教学的,为进一步学*其他立体图形奠定基础。
成功之处:
1.重视表面积概念的教学。在教学中利用在上节课中学生粘贴的长方体和正方体,让学生沿着棱剪开得到它们的展开图,并标出“上、下、前、后、左、右”六个面。这样把长方体和正方体的展开图与表面积的概念结合起来进行教学,便于把展开后的每个面与展开前的每个面的位置对应起来,可以更加清楚地看出长方体相对的面的面积相等,每个面的长和宽与长方体长、宽、高之间的关系,从而得出表面积的概念,即长方体和正方体六个面的总面积,叫做它的表面积。
2.重视表面积计算公式的推导。在例1的教学中,通过结合生活中的情境将知识学*、方法探究和解决问题三者统一起来进行教学,可以使学*内容基于问题学*,让学生进行主动探索表面积的计算方法,从而起到“一石三鸟”的功效。另外在推导长方体表面积计算公式的过程中,得出两种计算方法,教学中充分利用已有知识乘法分配律来沟通两种方法。特别要突出计算上(或下)面是长与宽的积,前(或后)面是长与高的积,左(或右)面是高与宽的积的教学,让学生牢固进行记忆,避免出现死记硬背计算公式的现象。
不足之处:
1.计算出现错误的现象很严重,主要是学生不细心,对于小数的计算不重视。
2.个别同学对于上下面、前后面、左右面的计算混淆,导致出现有的面不需要计算还是计算在内。
3.对于特殊的长方体进行侧面积计算时应补充为侧面积=底面周长×高,这样对于计算特殊长方体比较简便。
改进之处:
突出计算上(或下)面是长与宽的积,前(或后)面是长与高的积,左(或右)面是高与宽的积的教学,让学生牢记。
《长方体和正方体的表面积》这部分内容,是人教版五年级数学下册第3单元《长方体和正方体》的一个重点,也是难点。它是在学生认识掌握了长方体和正方体特征的基础上教学的。学*的难点在于,学生刚接触立体图形,空间观念不强,往往因不能根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少,以至在计算中出现错误。针对这一点,我在教学中给学生更多的动手操作实验与实践的空间,让学生通过剪一剪、看一看、比一比,自主探究等方式来认识概念,理解概念。
我在设计《长方体和正方体的表面积》这节课时,考虑到班级学生较多,所以活动主要以小组进行。思路主要是沿着什么是长方体的表面积——怎样求长方体的表面积——长方体的表面积在生活中的应用这样一条线来让学生自主探究的。在小组交流的过程中,我发现对教材的深度钻研和对学生的预设显得尤为重要。如课前在预设学生求长方体的表面积时,我只考虑到学生可能会出现三种情况:一个面一个面的面积依次相加;二个面二个面的一对对相加;先求出三个面的面积和再乘2,但是有的学生只说出了其中的一种简便情况。如果我在课前有更深入的研究,还可拓展学生思维,引导学生找出另外的方法。对于长方体、正方体表面积公式的归纳,学生和我也只总结出了文字公式,还应简化成字母公式,便于记忆和书写。另外在让学生做当堂检测第三关时,我发现有学生做错了,只是把错题通过投影仪呈现了出来,由于受条件限制,未能结合原题给学生好好评讲,这一点比较遗憾。
实践表明,只有深入研究、充分预设的课堂教学才能使不同学生得到不同的发展,才可能出现意外的惊喜和美丽的风景。以后教学中我将在课前加大研讨、分析力度,提高课堂教学实效性。
本节课的内容是在学生已经学*了面积和面积单位、长方体和正方体特征的基础上进行教学的,为进一步学*其他立体图形奠定基础。
成功之处:
1.重视表面积概念的教学。在教学中利用在上节课中学生粘贴的长方体和正方体,让学生沿着棱剪开得到它们的展开图,并标出“上、下、前、后、左、右”六个面。这样把长方体和正方体的展开图与表面积的概念结合起来进行教学,便于把展开后的每个面与展开前的每个面的位置对应起来,可以更加清楚地看出长方体相对的面的面积相等,每个面的长和宽与长方体长、宽、高之间的关系,从而得出表面积的概念,即长方体和正方体六个面的总面积,叫做它的表面积。
2.重视表面积计算公式的推导。在例1的教学中,通过结合生活中的情境将知识学*、方法探究和解决问题三者统一起来进行教学,可以使学*内容基于问题学*,让学生进行主动探索表面积的计算方法,从而起到“一石三鸟”的功效。另外在推导长方体表面积计算公式的过程中,得出两种计算方法,教学中充分利用已有知识乘法分配律来沟通两种方法。特别要突出计算上(或下)面是长与宽的积,前(或后)面是长与高的积,左(或右)面是高与宽的`积的教学,让学生牢固进行记忆,避免出现死记硬背计算公式的现象。
不足之处:
1.计算出现错误的现象很严重,主要是学生不细心,对于小数的计算不重视。
2.个别同学对于上下面、前后面、左右面的计算混淆,导致出现有的面不需要计算还是计算在内。
3.对于特殊的长方体进行侧面积计算时应补充为侧面积=底面周长×高,这样对于计算特殊长方体比较简便。
改进之处:
突出计算上(或下)面是长与宽的积,前(或后)面是长与高的积,左(或右)面是高与宽的积的教学,让学生牢记。
本节课的内容是在学生已经学*了面积和面积单位、长方体和正方体特征的基础上进行教学的,为进一步学*其他立体图形奠定基础。
成功之处:
1.重视表面积概念的教学。在教学中利用在上节课中学生粘贴的长方体和正方体,让学生沿着棱剪开得到它们的展开图,并标出“上、下、前、后、左、右”六个面。这样把长方体和正方体的`展开图与表面积的概念结合起来进行教学,便于把展开后的每个面与展开前的每个面的位置对应起来,可以更加清楚地看出长方体相对的面的面积相等,每个面的长和宽与长方体长、宽、高之间的关系,从而得出表面积的概念,即长方体和正方体六个面的总面积,叫做它的表面积。
2.重视表面积计算公式的推导。在例1的教学中,通过结合生活中的情境将知识学*、方法探究和解决问题三者统一起来进行教学,可以使学*内容基于问题学*,让学生进行主动探索表面积的计算方法,从而起到“一石三鸟”的功效。另外在推导长方体表面积计算公式的过程中,得出两种计算方法,教学中充分利用已有知识乘法分配律来沟通两种方法。特别要突出计算上(或下)面是长与宽的积,前(或后)面是长与高的积,左(或右)面是高与宽的积的教学,让学生牢固进行记忆,避免出现死记硬背计算公式的现象。
不足之处:
1.计算出现错误的现象很严重,主要是学生不细心,对于小数的计算不重视。
2.个别同学对于上下面、前后面、左右面的计算混淆,导致出现有的面不需要计算还是计算在内。
3.对于特殊的长方体进行侧面积计算时应补充为侧面积=底面周长×高,这样对于计算特殊长方体比较简便。
改进之处:
突出计算上(或下)面是长与宽的积,前(或后)面是长与高的积,左(或右)面是高与宽的积的教学,让学生牢记。
教学目标:
1、知识性目标:让学生理解长方体和正方体的表面积意义,初步学会长方体和正方体面积的计算方法。
2、探究性目标:能根据现实情景和信息,通过动手操作、小组合作、观察思考等解决问题的方法,去探求、经历、感受长方体和正方体的表面积概念和计算方法,初步培养学生探求意识和探求能力。
3、情感性目标:使学生感受到数学与生活的密切联系,培养学生初步的数学应用意识,并在探究过程中获得积极的数学情感体验。
教具、学具准备:
长方体和正方体药盒、长方体和正方体学具、直尺、不同规格的长方形和正方形纸板若干组、剪刀、透明胶、卷尺、竹竿等。
教学设计理念:
学生作为学*的主体,教师应积极创设各种有利于开发学生创造思维的教育情境,引导学生发现问题,分析矛盾,独立思考和相互启发。因此在教学设计中应加强对学生活动的设计,使活动的内在结构以及活动之间的结构有利于培养学生敢于求知、求异的探索态度,善于求新、设疑、迁移的学*能力,发散性思维和创造性动手操作能力。其次、要从学生的生活经验出发,用丰富多彩的亲历活动来充实教学过程,让学生在活动中运用多种知识和技能创造性地学*和实践。因此在教学设计中,要注意选取符合儿童的年龄特征和经验背景的活动,按由*及远、由浅入深、由具体到抽象、由简单到复杂。第三、教学内容要有利于学生的探究活动的开展,有利于学生提出问题、进行猜想、假设并制定科学探究活动计划,有利于学生的观察、实验、记录、统计等,有利于学生思索并得出结论。第四、探究活动要在情感态度上与儿童贴*,在一定程度上能够调动儿童参与活动的积极性。
教学过程:
一、创设活动情景,复*导入
1、师:同学们,我们已经学*了长方体和正方体的认识了,下面请同学们用老师为大家准备的这些长方形或正方形纸板每个小组做一个封闭的长方体纸盒。比一比哪一个小组合作得最好,最先做完,下面开始吧!
2、小组合作,利用长、正方形纸板动手制作长方体纸盒。
3、师:同学们合作得很好。哪个小组的同学能说一说你们制作的长方体纸盒它得基本特征,指出它的长、宽、高,并分别指出和长、宽、高相等的棱。
生1:长方体有6个面、12条棱、8个顶点。
生2:在一个长方体中,相对的面完全相同,相对的棱长度相等。
生3:长方体的6个面是长方形,特殊情况有两个相对的面是正方形。
生4:拿着长方体指出它的长、宽、高。
师:沿着长方体纸盒的前面和上面相交的棱剪开,再展*。(教师将长方体表面积教具展开贴再黑板上)
简析:此环节为学生创设了充分的想象空间,让学生在动手操作中运用所学知识,巩固所学知识,发展了学生的思维,并使学*数学成了一种乐趣,从而唤起了学生观察、探究、发现数学规律的欲望,为学生学*新知作了铺垫,使学生顺利进入下个环节的学*。
二、自主探究,合作交流
1、教学长方体、正方体表面积的概念
师:同学们说得真好,下面请同学们观察自己制作好的长方体纸盒,分别用上、下、左、右、前、后标明六个面。
师:长方体有哪些面是完全相同的长方形?它们的面积怎么样?
生:(拿着手中展开的长方体)上面和下面、左面和右面、前面和后面是完全相同的长方形,它们的面积相等。
师:有几组面积相等的长方形?
生:总共有三组面积相等的长方形。
师:刚才我们观察了长方体的展开图形,现在我们一起来观察正方体的展开图形(课件演示正方体展开图形)
师:展开后的每个面是什么形状的?有几个相等的面?
生:每个面是正方形的,有6个相等的面。
师:(指着两个展开的图形说明)长方体和正方体的6个面的面积总和叫做它的表面积。 (板书课题:长方体和正方体的表面积、长方体表面积的计算)
简析:为了使学生更好的理解表面积的概念,通过让学生亲自操作,认真观察,使其更清楚的看出长方体相对面的面积相等,也为下面学*计算长方体的表面积做好准备。
2、教学长方体、正方体表面积的计算
师:既然长方体六个面的总面积叫做它的表面积,那么怎样求长方体的表面积呢?请你们用自己制作的长方体纸盒,想一想、量一量、算一算,合作完成。
生合作探究计算方法,汇报如下:
生1:我们组列式是65+65+63+63+53+53,分别求出长方体上、下、前、后、左、右6个面的面积,再把它们的积加起来就是它们的表面积。
生2:我们组列式为652+632+532。我用652求上下两个面的面积;用632求出前后两个面的面积;用532求出左右两个面的面积,然后把三次乘得的结果加起来就是长方体的表面积。
生3:我们组列式是(65+63+53)2。我用65求出上面;63求出前面;53求出后面。然后用它们相加的和再乘以2,就求出六个面的总面积。因为长方体六个面中分别有三组相对的面的面积相等。
生4:我们组列式是(5+3+5+3)6+532。我用5+3+5+3求的是长方体展开后大长方形的长,再乘以6就求出上下、前后4个面的面积;532求的是左右两个面的面积。最后再求出它们的和。
生5:我们组制作的长方体纸盒和他们的不一样,因为左右两个面是正方形,所以我列式是:634+332,我用634求的是上下、前后四个面的面积;用332求的是左右两个面的面积。把两次乘得的结果加起来就是长方体的表面积。
师:你们计算的很准确!你们组制作的长方体纸盒是一个特殊的长方体,你能具体问题具体分析,找到简捷的计算方法,很值得学*。生活中的长方体确实是各种各样的,找到解决实际问题的好方法才是最重要的。
师:长方体的表面积我们会计算了,那么正方体的表面积应该怎样计算?
生1:正方体同长方体一样都是六个面,而这六个面的面积是相等的,每个面都是正方形,所以我认为正方体的表面积等于正方形面积乘以6。
生2:正方体的六个面都是正方形,面积相等,所以正方体的表面积等于棱长棱长6。
简析:当学生理解表面积的概念后,急于知道长方体表面积的计算方法,如果把求法直接告诉学生或引导学生一步一步推导出表面积的公式,就不利于学生创新思维的发展。因此,让学生运用自己的长方体纸盒,通过讨论、测量、计算等方法,解决实际问题,降低了理解的难度,也进一步激发了学*数学的兴趣,增强了合作和探求知识的意识。在此环节中学生不仅自己主动经历表面积的计算过程,感受到了表面积的意义,而且也使自己探索到解决问题的方法,加深了学生对知识的理解,培养了学生的创新能力。
三、巩固练*,深化理解
1、师出示一个长方体药盒,问:你能计算出它的表面积吗?(不能。)为什么?(生:因为不知道每个面的长和宽......)现在告诉你这个长方体的长、宽、高分别是10、8、6厘米,你能算出它的表面积吗?只列出算式不计算。
2、生独立计算。
3、师:通过列算式,你有什么发现?(只要知道了长方体的长、宽、高,我们就可以求出它的表面积。)
简析:此环节是加强了学生对所学内容进一步理解深化巩固,也是对学生由感性认识上升到理性认识的抽象过程。
四、联系实际、学以致用
1、师:请同学们拿出正方体药盒,帮助工人师傅计算一下要加工100个这样的药盒,至少要用多少纸板?
教学目标:
1、让学生理解并掌握长方体和正方体的表面积的含义和计算方法,能运用长方体和正方体的表面积的计算方法解决一些简单的实际问题。
2、让学生在活动中进一步积累空间与图形的学*经验,发展空间观念和数学思考。
3、让学生进一步感受立体图形的学*价值,增强学*数学的兴趣。
教学重点难点:
长方体和正方体表面积的含义及其计算方法的推导过程。
教学准备:
长方体、正方体模型。
教学过程:
一、猜测导入
出示两个纸盒(一个长方体、一个正方体)。
提问:长方体和正方体有哪些特征?
谈话:这两个纸盒,看起来大小差不多,请你猜一猜,做哪个纸盒用的硬纸板多?有什么方法可以证明你的猜测是否正确?(引导可以计算它们所用的硬纸板的面积,然后再比较)
二、探究新知
1、引导探究长方体表面积的计算方法。
(1)出示问题:如果告诉你这个长方体纸盒的长、宽、高,你能算出做这个长方体纸盒至少要用多少*方厘米的硬纸板吗?
追问:做这个长方体纸盒至少要用多少*方厘米的硬纸板,与这个长方体各个面有什么关系?可以解决这个问题吗?
教师启发:做这样一个长方体纸盒要用多少*方厘米的硬纸板就是要计算这个长方体的表面积。首先要找出每个面的长和宽.根据长方体的长、宽、高可以计算每个面的面积,把每个面的面积合在一起就是表面积。
(2)学生独立列式,指名汇报,并根据学生回答进行板书。
解法一:652+642+542=60+48+40=148(*方厘米)
解法二:(65+64+54)2=(30+24+20)2=742=148(*方厘米)
答:至少要用148*方厘米的硬纸板。
(3)比较小结:仔细观察这两种方法,体现了长方体的什么特征?你认为计算长方体6个面的面积之和时,最关键的环节是什么?(要根据长、宽、高正确找出3组面中相应的长和宽)这两种解法之间有什么联系?
2、自主探究正方体表面积的计算方法。
(1)谈话:根据长方体的特征,我们解决了做一个长方体纸盒至少要用多少*方厘米硬纸板的问题,那么这个正方体纸盒的问题你会解决吗?
(2)学生独立尝试解答,提醒学生根据正方体的特征进行思考。
(3)组织交流反馈。
3、揭示表面积的含义。
谈话:我们在求做长方体或正方体纸盒至少各要用多少硬纸板的问题时,都算出了它们6个面的面积之和,由此你知道什么是长方体或正方体的表面积吗?
揭示:长方体或正方体6个面的总面积,叫做它的表面积。
(板书课题:长方体和正方体的表面积)
三、练*巩固
完成课本练一练以及练*四第一、二、五题。
四、全课小结
谈话:通过今天的学*你有什么收获?你能概括性的语言说一说怎样求长方体和正方体的表面积吗?
五、布置作业
1、做练*四第三、四题。
教学内容:
义务教育教科书人教版教材五年级下册第三单元第三课时。
教学目标:
1、认识长方体和正方体的展开图,理解长方体和正方体的表面积的概念,会计算长方体和正方体的表面积。
2、经历观察、操作、想象、探索等数学活动过程,理解长方体展开图中每个面与长方体长、宽、高之间的关系,探索长方体和正方体的表面积的计算方法,能解决有关表面积计算的实际问题。
3、体验数学与生活的联系,培养学生的空间观念,培养学生比较、观察、推理的能力。
教学重点:
认识长方休和正方体表面积的展开图,掌握长方体和正方体表面积的计算方法。
教学难点:
应用表面积的计算方法解决有关实际问题,培养学生的空间想象能力。
教学资源:
长方体、正方体的纸盒,长方体和正方体的展开图。
教学过程:
一、创设情境,导入新课
教学目标:
1、使学生初步掌握长方体、正方体的表面积的概念;
2、学生通过观察、操作、探究等合作活动初步掌握长方体和正方体表面积的计算方法;
3、能较灵活地运用所学知识解答简单的实际问题;
教学设想:
一. 创设情境,引入新知
1.谈话
师:你们快要毕业了,我们班级陈艾菲的妈妈为我们班级的每个孩子准备了一份特殊的礼物。对!是一本长方体的`相册,里面有我们班每一个同学的照片。
多媒体:相册
师:我想将这份特别的礼物也送给学校的领导,你们觉得我这个提议怎么样?我打算先将这份礼物包装一下,那我得准备一张多大的包装纸呢?
2.引题
师:你能说说什么是长方体的表面积呢?
板书:长方体六个面的总面积,叫做它的表面积。
二. 实践操作,探究方法
1.提出问题。
师:长方体的表面积和什么有关呢?
多媒体:已知这本长方体的相册长是30厘米,宽是28厘米,高是5厘米,包装这样一本相册,至少要多少包装纸?
师:小组可以先讨论讨论,再把算式写在纸上,贴到黑板上来。
2. 分组合作进行计算。
3. 小组讨论并把算式贴在黑板上:
方法一:30282+3052+2852
方法二:(3028+305+285)2
4. 在完整解答过程中要注意什么?注意写解,单位。
5. 小结:计算长方体的表面积一般有哪几种方法?
(根据总结,演示多媒体)
6. 练*:
师:老师的难题解决了。那你们昨天不是回家测量了长方体形状物体的长、宽、高,现在你们给同桌求它的表面积好吗?注意只列式不计算。
出示几份学生计算物体的表面积:
(1) 餐巾纸盒
问:求餐巾纸盒的表面积有什么用呢?
(2)大橱
问:求大橱的表面积有什么用呢?
7. 出示课题:
师:今天这节课我们探讨了什么问题呢?
出示课题:长方体的表面积计算
8. 这里有个长方体,看看哪个算式是正确的?
(1)已知长方体的长2厘米、宽7厘米、高6厘米,求它的表面积的正确算式是( )
a.272+672+62
b.(27+26+67)2
c.27+26+67
(2)给一个长和宽都是1米、高是3米的长方体木箱的表面喷漆,求喷漆面积的正确算式是( )
a.(11+13+13)2
b. 112+134
c.112+143
问:那2、3、两个算式有什么道理呢?小组可以先讨论讨论。
师:先说说112+134有什么道理?
(多媒体演示)
生:112求的是上下底的面积,因为上下底是正方形,所以其余4个面的面积都相等,就用13先求出一个面,再4求出4各面的总面积
师:那112+143有什么道理呢?
生:112求的是上下底的面积,正方形的边长就是长方形的宽。14就是4个长方形拼成的大长方形的长,3就是大长方形的面积。
(3)一个长方体的长、宽、高都是4m,它的表面积是多少?( )
《长方体和正方体的表面积》是在学生认识并掌握了长方体和正方体特征的基础上学*的,是本单元的重要内容。
这节课是学生学*立体图形计算的开始,为了使学生更好地建立表面积的概念和计算方法,我通过演示课件,加强动手操作和实物演示,按照“创设情境----动手操作----自主探究----总结规律”的教学流程进行教学设计。
(一)创设情境,让数学知识和生活结合起来
本节课我创设让学生“想一想”做一个长方体纸盒至少需要多少纸板这一情境来引发学生思考,要求“需要多少纸板”就必须知道长方体纸盒的什么,让学生通过思考和交流,认识到“必须分别计算出六个面的总面积”。这时及时我指出:“长方体或正方体六个面的总面积叫做表面积”,这样设计能刺激学生产生好奇心,唤醒学生强烈的参与意识,使学生在自主的观察与思考中理解了表面积的意义,为探索长方体和正方体表面积的计算打下了良好的基础。
(二)动手操作,激发学生的自主探究能力
在教学长方体表面积的计算方法时,先让学生动手量一量这个长方体纸盒的长、宽、高,然后让学生独立思考如何求这个长方体纸盒的表面积,最后以小组为单位交流想法并把方法与结果记录下来,共同探索出长方体表面积的计算方法。
(三)巧编练*题,培养学生的优化思维和归纳能力
在学生掌握了长方体表面积的计算方法后,我没有单独安排时间推导正方体表面积的计算方法,而是设计了一道练*题(求长、宽、高都是3厘米的长方体的表面积的最优方法)。学生在探讨算法的过程中很自然地发现了正方体表面积的计算方法,这样既节省了时间,又培养了学生优化思维和求异思维的能力,促进课堂效益的提高,在学生探究和交流的过程中,达到优化思维,推陈出新的效果,并从中感受到学*的乐趣。
(四)联系实际,利用数学知识解决问题
我通过创设情境让学生看到许多实际生活中的.问题可以通过学到的知识来解决的,学生深刻地感受数学与实际生活是密切联系的。为此,我出示了在生活中经常见到的火柴盒,让学生分别求一求火柴盒的内盒和外盒的表面积,从中使学生认识到长、正方体的表面积也会遇到许多特殊情况,我们在求表面积是不能死套公式,要根据实际情况具体问题具体分析。
长方体表面积的计算一课是在学生已经认识了长方体的特征的基础上学*的,这部分内容对于学生来说并不困难,只要把六个面的面积相加就行。然而在实际应用中,特别是遇到特殊情况,比如鱼缸、粉刷教室用材、通风管道等,有很多学生往往不能分清哪些面不需要计算,或是应该怎样计算?教材中计算表面积时是让学生先想象出展开图,再根据展开图各个图形的面积来选择计算出所求面积。
面对以往学生在学*时出现的较高的错误率,我在教学时便采用了让学生“钻”进长方体里求表面积的方法。
我首先让学生环顾四周,把我们的教室看做一个长方体,而我们就生活在这个长方体的世界里,而后我让学生分别指出这个长方体----教室的的顶点、相交于同一顶点的三条棱各叫什么?屋顶的面怎么求?前后的面怎么求?一般的教学是让学生想象展开图再进行计算,由于这个图是虚拟的,对学生的空间观念要求比较高。而“钻”进长方体,长方体的各个面就围绕在学生的四周,使学生感觉实在,从而利用直观的看就知道了哪个面不求,还可以用手比划一下,想清楚这个面的长与宽各是多少,再求出面积。这样的做法,对于空间观念比较弱的学困生来说,多了一根思维的“拐棍”。因此,在解决长方体的表面积实际问题时,我经常可以看到有些同学不时的抬起头或转过头看墙壁,有的还用手指偷偷比划着。我知道,他们此时,正“钻”进长方体里。
当然教学中仍存在着一些不足,如没有强调计算必须在单位统一的前提下才可以进行,造成一道练*题的错误率很高。这也是从一个侧面教育学生要养成良好的认真审题的好*惯,在今后的练*中,我会进一步训练学生注意这一点。
本节课的教学本着让学生自主探究的要求,让学生充分自主学*、研究、讨论和操作,从而得出结论,激发学生的学*兴趣,培养学生思维能力和实践能力。并在操作的过程中,让学生理解表面积的意义,总结出求表面积的计算方法并能学会运用。
但是由于大部分学生是外来学生,缺乏一定的生活经验,导致他们缺乏解决实际问题的能力,没能真正学以致用。如在解决课本练*中的给洗衣机做一个布罩时,求至少需要多大面积的布,部分学生没有直接接触过洗衣机,对给它做布罩需要做几个面不清楚,因而影响解决该题。另外,课本练*中要为一长为10厘米,宽为8厘米,高位2厘米的长方体选择一合适尺寸的包装纸,几乎全部的学生都选择了第一种包装纸,理由是这两者的面积刚好相等。正是由于学生对如何包装物体缺乏一种生活的认识,所以他们没法做出教参所要求的答案。
因此,我们教师在教学该部分时,应尽量让学生获得更多对生活的认识,加强直观教学,让他们在生活中学*、在生活中获取知识。
长方体表面积的计算一课是在学生已经认识了长方体的特征的基础上学*的,这部分内容对于学生来说并不困难,只要把六个面的面积相加就行。然而在实际应用中,特别是遇到特殊情况,比如鱼缸、粉刷教室用材、通风管道等,有很多学生往往不能分清哪些面不需要计算,或是应该怎样计算?教材中计算表面积时是让学生先想象出展开图,再根据展开图各个图形的面积来选择计算出所求面积。
面对以往学生在学*时出现的较高的错误率,我在教学时便采用了让学生“钻”进长方体里求表面积的方法。
我首先让学生环顾四周,把我们的教室看做一个长方体,而我们就生活在这个长方体的世界里,而后我让学生分别指出这个长方体————教室的的顶点、相交于同一顶点的三条棱各叫什么?屋顶的面怎么求?前后的面怎么求?一般的教学是让学生想象展开图再进行计算,由于这个图是虚拟的,对学生的空间观念要求比较高。而“钻”进长方体,长方体的各个面就围绕在学生的四周,使学生感觉实在,从而利用直观的看就知道了哪个面不求,还可以用手比划一下,想清楚这个面的长与宽各是多少,再求出面积。这样的做法,对于空间观念比较弱的学困生来说,多了一根思维的“拐棍”。因此,在解决长方体的表面积实际问题时,我经常可以看到有些同学不时的抬起头或转过头看墙壁,有的还用手指偷偷比划着。我知道,他们此时,正“钻”进长方体里。
当然教学中仍存在着一些不足,如没有强调计算必须在单位统一的前提下才可以进行,造成一道练*题的错误率很高。这也是从一个侧面教育学生要养成良好的认真审题的好*惯,在今后的练*中,我会进一步训练学生注意这一点。
一、一个游泳池,长二五米,宽一零米,深一.六米,在游泳池的四周和池底砌瓷砖,要是瓷砖的边长是一分米的正方形,那么至少需要这种瓷砖多少块?
二、要做一个长七分米,宽四分米,高五分米的鱼缸,至少需要多少*方分米的玻璃?
学生在高年级学*了“长方体表面积的计算”以后,对标准长方体的表面积计算问题都能够熟练掌握,但是对现实生活中触及计算长方体表面积的问题就不能正确进行计算,比如以下几道题:
三、一间课堂长八米、宽六米,高三米,现在要用涂料粉刷它的四壁和顶棚。要是扣除门、窗和黑板二四*方米,求要粉刷的面积有多大?要是每*方米用涂料零.一五千克,一共需要多少千克涂料?
这几道要正确计算不但要掌握长方体表面的计算方法,而且要求学生计算时要能够正确判断计算的是哪几个面的面积之和。刚开端教学时学生呈现了错误就给学生阐发、改正,但是效果并不明显,学生遇到这些问题时又发生了错误。后来经过认真阐发、寻找缘故原由,发现学生不能够正确进行表面积的计算是对长方体的认识掌握不扎实,没有树立正确的空间观念,缺乏对物体的空间想象力。
随着新课程的学*,在进行长方体表面积计算的教学中重视了学生空间想象力的训练,学生在学*完好长方体表面积之后办理了这一类问题错误明显减少了。
(一)让学生拿出自已做的长方体模型,指出长方体的长宽高,说出如何计算上下、前后、左右每个面的面积,随后变换长方体模型放置方向进行练*。
(二)脱离长方体模型,一名同学口述长方体放置方法,其它学生想象判断上下、前后、左右每个面如何计算。
(三)针对长方体实例或者详细放置好的长方体模型,比如长八厘米、宽六厘米、高五厘米的长方体,八×六求的哪一个面的面积?……通过这样练*,学生在头脑中正确的把长方体图形和详细实物能够联系起来,能够凭据实物想象出基本图形,而且能够凭据想象把立体图形剖析成简单的*面图形,这现实上就是我们所说的空间观念的培养。学生办理上面三道现实问题,就是对学生空间观念的评测。学生空间观念是否正确,通过在现实操作、在办理现实问题中进行检验,随时发现问题、改正毛病,逐步形成正确的空间观念。
一个问题的办理需要时间和空间,只有给学生留有较大的时间和空间,学生才气有所发现、有所创造。如问题:“用八个一立方厘米的小正方体凭借想象表现出一个表面积最大的长方体、一个表面积最小的长方体”展现在学生面前时,要留给学生充实的思考时间,这样才气充实激发学生的头脑。常常我们教师为了急于得到知识的结果,用简单的方法,或似是引导实为灌输的方法,让学生沿着教师设计的“问题”通道到达知识的此岸,用牺牲学生的头脑强度来获取所谓的教学效率。想,要是这个问题不是学生自己想出来的,而是教师给于“启发”、“点拨”,学生知道了:“噢!原来是这样。”还谈得上学生的头脑得到了什么发展吗?学生头脑的发展,就是在想的过程中,就是在从“想不出”到“想出来”的过程中得到发展的。越是对遇到的问题百思不得其解时,学生的头脑活动越是积极,一旦问题办理,他们的头脑也就得到了一种令人惊喜的发展。当然,每一节课的教学时间是有限的,在有限的时间内,能不能把尽可能多的时间和空间留给学生学*?再说,今天给学生留有了充足的时间和空间,学生得到了很好的发展,那么,在以后学生就会有更大的劳绩和发展。欲速则不达,我们现在的教育不就是常常为了急于求成,造成留给学生要记忆的东西不少,学会头脑的东西却未几这一大遗憾吗?
当我把问题:“用八个一立方厘米的小正方体凭借想象表现出一个表面积最大的长方体、一个表面积最小的长方体”展现在学生面前时,发现并不如我所预料的学生无法办理。有的学生说出了:长八厘米、宽一厘米、高一厘米,长四厘米、宽二厘米、高一厘米,长二厘米、宽二厘米、高二厘米,另有的学生画出草图。让我深深体会到学生的确拥有不可估量的潜力。只要我们为学生创设出一个能展现他们才气的时间和空间,隐藏在学生头脑中的潜力就会如埋藏在地下的能量喷涌而出。
老师们在讨论《长方体的表面积》一节时,常常会有几点疑惑:一是前节刚上过《展开与折叠》,这节有什么必要再把长方体再展开?二是教材为什么要安排“估算”?三是教材中的正方体图形有什么必要同时给出三个棱长的数据?对这几个问题,我是这样看的:
一、本节为什么要把长方体再展开?
立体图形的表面积,求的是面积。既是面积,就是*面几何的研究对象,因此,从逻辑上说,教材在这里必须要把立体问题转化为*面问题,才能用面积的概念去给表面积下定义。在*面几何里,所讨论问题的前提都是“在同一*面上”,因此,要再次展开。
三维立体空间与二维*面空间的图形的相互转换,是空间想象能力的重要组成部分。由于技术的限制,对于立体图形,目前我们在教材里呈现给学生的只能是“三维示意图”(实际上是二维图形)。因此,学生的三维空间想象能力常常具体地体现为“让‘三维示意图’立起来”。而学过立体几何的人都知道,未来学生解决立体几何问题时,最重要的意识与能力就是“转化”,即把三维问题转化为二维。本节对立体图形与*面展开图形的对应关系的讨论,意在加强面与体的联系,培养学生的转化意识,进一步发展学生的空间想象能力。
二、为什么要安排“估算”?
教材在“估一估,算一算”的小标题下,提出:“做上面的纸盒,至少需要用多少纸板?先估一估,再精确计算。”
我认为,这首先是一个实际应用问题,是做纸盒时必然要遇到、要解决的问题。既然从生活中提出了做纸盒,就理所当然地要服从生活逻辑。
其次,这里说的是“至少”,也就是,估算时应当“往大里去”。因此,可以是用最大面的面积乘以6,也可以是把整个展开图看成一个大的长方形的局部。这样处理,就不会跟后面精确计算的过程重复,也就不会显得多余。
更重要的是,估算技能是一种重要的数学技能,估算意识是一种重要的数学意识,重视估算,是新课标、新课程对传统数学教学的最显著、最重要的改进之一。本节的引例又确有估算的实际需要,因此,教材在本节安排估算是很有道理的。
三、正方体图形为什么要给出三棱长?
本节的课题是《长方体表面积》,而非过去教材的《长方体、正方体的表面积》。在教材的正文中实际上只讨论了长方体的表面积,而对正方体表面积只是在“试一试”中作为长方体表面积的一个应用给出。在“试一试”里给出的条件是“棱长为0、8米的正方体”,而在紧接着的“练一练”中,给出的正方体图形则标明了三维的数据。
我认为,这段教材的意图是:让学生由“正方体是特殊的长方体”,套用长方体表面积的算法来计算正方体的表面积。教师在教学中,不应当把“正方体的.表面积等于棱长*方乘以6”处理为学生的“已知”,而必须让学生经历简单的推理过程。也就是,要把“棱长为0、8米的正方体”转化为“长、宽、高都是0、8米的长方体”,然后,套用长方体表面积的计算方法,再简化为“棱长*方乘以6”。否则,在数学逻辑上就是不严密的。
《长方体的表面积》是小学数学五年级下册的内容,这部分知识的教学是在学生认识并掌握了长方体、正方体特征的基础上教学的,也是学生学*几何知识由*面计算扩展到立体计算的开始,是本单元的重要内容。开课时我用学生亲手制作的长方体的实际的学具引入新课,学生自己观察长方体有六个面,要想知道长方体的六个面到底有多大,请你利用小组中的学具帮助老师解决。
学生通过思考与交流,认识到“要想知道长方体的六个面到底有多大,必须计算出六个面的面积总和”,这时我因势利导指出:“长方体六个面的面积之和叫做它的表面积”,然后再让学生摸一摸、说一说。这样设计既能刺激学生产生好奇心,又能唤起学生强烈的参与意识,产生学*的需要,使学生在自主的观察与思考中理解了表面积的意义,为探索长方体和正方体表面积的计算打下了良好的基础。
数学于生活,同时又服务于生活。应用学到的知识解决实际生活中的问题,不但能使学生感受数学与实际生活是密切联系的,而且能培养学生的创新精神。为此,我出示了以下几种情况的练*:比如无盖的玻璃鱼缸、没有底面的洗衣机罩,学生认识到长、正方体的表面积也会遇到许多特殊情况,我们求表面积不可以千篇一律要根据实际情况具体问题具体分析。
因为是从*面到立体,从二维到三维,**看似简单,而对小学生却有一定的难度。学生的作业反映出来的问题屡见不鲜,因为与实际生活联系比较密切的例子比比皆是,且各有特点,有些题学生考虑不全面,有些却是无所适从,刚刚学过长方体和正方体的表面积,有个别学生不分青红皂白,不认真审题,如果在课堂上我能够抓住学生实践的过程适时把展开的*面图做出点拨效果会更好。
比如教科书练*六中的练*题,要在游泳池的四周和底面都贴上瓷砖,需要贴多少*方米的瓷砖,有些学生不认真审题最后求出来的是六个面的面积,紧接着下一道题是学校要粉刷教室,扣除门窗的面积后,学生没有考虑到地面不用粉刷,从而也是求的六个面的面积,与实际生活联系后,他们就会恍然大悟,而反映出他们理解问题的片面性,不够灵活。
有些学生缺乏空间想象力,还是分不清楚具体的面应该怎样求才是它的面积,而且学生缺乏耐心细致,做不到具体情况具体分析,因此在解决实际问题时,失误较多。以后的教学中我应注重通过观察物体、制作模型、设计图案等活动,发展学生的空间观念。
新课程倡导学生学*有用的数学,并尽可能在有趣的情境中进行学*。教学《长方体表面积》这一课时我也在努力着,力求让学生乐学、学懂、学会,并在教学中不断地调整自己的思路。先是从生活实际出发,求长方体表面积的方法。。接着解决为什么要求长方体的表面积(学有用的数学),解决生活中,如:包装盒子、粉刷墙壁等不是都求六个面的表面积的具体问题,即组织学生完成“练一练”的题。反思如下:
一、继续抓好计算。我发现有很大一部分学生方法懂了,计算却出错了,孩子们的借口是数字太大容易出错。所以计算应是常抓不懈的。
二、进一步培养学生的抽象思维能力。学生出错的原因之一是分不清底面是哪两条棱相乘的面积,之所以这样是因为对长方体革面的人是没有理解透彻。
三、进一步在学生“乐学”方面下功夫,从这一节课看数字是大点,算起来复杂些,孩子们就觉得没趣了,有部分学生对数学有了畏惧的念头,这是最不利于我们教学的因素之一。
四、通过让学生自己动手剪、看观察分析得出表面积的几种计算方法,学生能自主探索出表面积的计算方法,学*兴趣较浓,且对计算方法也掌握的较好,避免了死记公式的办法。
五、在学生掌握了表面积的计算方法后,再出示一些生活实际应用题,既练*了实际又提高了学生学*的兴趣。
《长方体的表面积》教学反思《长方体的表面积》是一节典型的概念教学课。它是在学生认识并掌握了长方体、正方体特征的基础上教学的,也是学生学*几何知识由*面计算扩展到立体计算的开始,是本单元的重要内容。为了让学生亲自感知表面积这一概念,在讲长方体的表面积之前我给学生布置了任务,要求学生自己制作一个长方体和正方体学具,调动学生感兴趣的学*情境,开课时我用学生亲手制作的长方体学具引入新课,学生自己观察长方体有六个面,要想知道长方体的六个面到底有多大,请你利用小组中的学具帮助老师解决。学生通过思考与交流,认识到“要想知道长方体的六个面到底有多大,必须计算出六个面的面积总和”,这时我因势利导指出:“长方体六个面的面积之和叫做它的表面积”,然后再让学生摸一摸、说一说。这样设计既能刺激学生产生好奇心,又能唤起学生强烈的参与意识,产生学*的需求,使学生在自主的观察与思考中理解了表面积的意义,为探索长方体和正方体表面积的计算打下了良好的基础。
这样的教学,孩子们在直观感知,动手操作中认识了长方体的表面积,最后得出结论。数学来源于生活,同时又服务于生活。应用学到的知识解决实际生活中的问题,不但能使学生感受数学与实际生活是密切联系的,而且能培养学生的创新精神。为此,我出示了以下几种情况的练*:比如无盖的玻璃鱼缸、没有底面的洗衣机罩,学生认识到长、正方体的表面积也会遇到许多特殊情况,我们求表面积不可以千篇一律要根据实际情况具体问题具体分析。因为是从*面到立体,**看似简单,而对小学生却有一定的难度。学生的作业反映出来的问题屡见不鲜,因为与实际生活联系比较密切的例子比比皆是,有些题学生考虑不全面,有些却是无所适从,刚刚学过长方体和正方体的表面积,有个别学生不分青红皂白,不认真审题,如果在课堂上我能够抓住学生实践的过程适时把展开的*面图做出点拨效果会更好。有些学生缺乏空间想象力,还是分不清楚具体的面应该怎样求才是它的面积,而且学生缺乏耐心细致,做不到具体情况具体分析,因此在解决实际问题时,失误较多。以后的教学中我应注重通过观察物体、制作模型、设计图案等活动,发展学生的空间观念。例如,礼堂中有四根长方体形状的木柱,底面是正方形,边长是5分米,高5米,这四根柱子占地面积是多少分米?有个别学生依然把底面积和表面积混淆,把简单问题复杂化。数学知识从生活中来,但是他们生活常识较少,思维跟不上,对所学的知识没有吃透,似懂非懂又不及时追问。应该对教材有更深入的研究,也应该全方位的去拓展学生思维,尤其是长方体和正方体这一部分内容,在生活中学生对长方体可以说司空见惯,在学*新知时学生也是兴味盎然,积极性很高,但数学知识具有高度的抽象性,今后要多引导学生在动手操作中思考加工,培养技能技巧,促进思维发展,在*时的教学中有时怕学生在课堂上忘乎所以,不好组织,所以尽量避免让学生动手操作,今后也应吸取本次的经验,尽可能的让学生多动手,动手的同时也会拓展学生的思维,达到举一反三,触类旁通的效果。以后的教学中我应注重通过观察物体、制作模型、设计图案等活动,将抽象的知识变成了学生能看得见、摸得着的现实东西,使学生在观察和操作中,对知识的思考与实物模型的演示和操作有机的结合起来,在学生头脑中形成表象,建立概念,以动促思。并给学生机会,让学生充分发表自己的见解。
老师们在讨论《长方体的表面积》一节时,常常会有几点疑惑:一是前节刚上过《展开与折叠》,这节有什么必要再把长方体再展开?二是教材为什么要安排“估算”?三是教材中的正方体图形有什么必要同时给出三个棱长的数据?对这几个问题,我是这样看的:
一、本节为什么要把长方体再展开?
立体图形的表面积,求的是面积。既是面积,就是*面几何的研究对象,因此,从逻辑上说,教材在这里必须要把立体问题转化为*面问题,才能用面积的概念去给表面积下定义。在*面几何里,所讨论问题的前提都是“在同一*面上”,因此,要再次展开。
三维立体空间与二维*面空间的图形的相互转换,是空间想象能力的重要组成部分。由于技术的限制,对于立体图形,目前我们在教材里呈现给学生的只能是“三维示意图”(实际上是二维图形)。因此,学生的三维空间想象能力常常具体地体现为“让‘三维示意图’立起来”。而学过立体几何的人都知道,未来学生解决立体几何问题时,最重要的意识与能力就是“转化”,即把三维问题转化为二维。本节对立体图形与*面展开图形的对应关系的讨论,意在加强面与体的联系,培养学生的转化意识,进一步发展学生的空间想象能力。
二、为什么要安排“估算”?
教材在“估一估,算一算”的小标题下,提出:“做上面的纸盒,至少需要用多少纸板?先估一估,再精确计算。”
我认为,这首先是一个实际应用问题,是做纸盒时必然要遇到、要解决的问题。既然从生活中提出了做纸盒,就理所当然地要服从生活逻辑。
其次,这里说的是“至少”,也就是,估算时应当“往大里去”。因此,可以是用最大面的面积乘以6,也可以是把整个展开图看成一个大的长方形的局部。这样处理,就不会跟后面精确计算的过程重复,也就不会显得多余。
更重要的是,估算技能是一种重要的数学技能,估算意识是一种重要的数学意识,重视估算,是新课标、新课程对传统数学教学的最显著、最重要的改进之一。本节的引例又确有估算的实际需要,因此,教材在本节安排估算是很有道理的。
三、正方体图形为什么要给出三棱长?
本节的课题是《长方体表面积》,而非过去教材的《长方体、正方体的表面积》。在教材的正文中实际上只讨论了长方体的表面积,而对正方体表面积只是在“试一试”中作为长方体表面积的一个应用给出。在“试一试”里给出的条件是“棱长为0。8米的正方体”,而在紧接着的“练一练”中,给出的正方体图形则标明了三维的数据。
我认为,这段教材的意图是:让学生由“正方体是特殊的长方体”,套用长方体表面积的算法来计算正方体的表面积。教师在教学中,不应当把“正方体的表面积等于棱长*方乘以6”处理为学生的“已知”,而必须让学生经历简单的推理过程。也就是,要把“棱长为0.8米的正方体”转化为“长、宽、高都是0。8米的长方体”,然后,套用长方体表面积的计算方法,再简化为“棱长*方乘以6”。否则,在数学逻辑上就是不严密的。
新课程倡导学生学*有用的数学,并尽可能在有趣的情境中进行学*。教学《长方体表面积》这一课时我也在努力着,力求让学生乐学、学懂、学会,并在教学中不断地调整自己的思路。先是从生活实际出发,求长方体表面积的方法。。接着解决为什么要求长方体的表面积(学有用的数学),解决生活中,如:包装盒子、粉刷墙壁等不是都求六个面的表面积的具体问题,即组织学生完成“练一练”的题。反思如下:
一、继续抓好计算。我发现有很大一部分学生方法懂了,计算却出错了,孩子们的借口是数字太大容易出错。所以计算应是常抓不懈的。
二、进一步培养学生的抽象思维能力。学生出错的原因之一是分不清底面是哪两条棱相乘的面积,之所以这样是因为对长方体革面的人是没有理解透彻。
三、进一步在学生“乐学”方面下功夫,从这一节课看数字是大点,算起来复杂些,孩子们就觉得没趣了,有部分学生对数学有了畏惧的念头,这是最不利于我们教学的因素之一。
四、通过让学生自己动手剪、看观察分析得出表面积的几种计算方法,学生能自主探索出表面积的计算方法,学*兴趣较浓,且对计算方法也掌握的较好,避免了死记公式的办法。
五、在学生掌握了表面积的计算方法后,再出示一些生活实际应用题,既练*了实际又提高了学生学*的兴趣。
长方体表面积的计算一课是在学生已经认识了长方体的特征的基础上学*的,这部分内容对于学生来说并不困难,只要把六个面的面积相加就行。然而在实际应用中,特别是遇到特殊情况,比如鱼缸、粉刷教室用材、通风管道等,有很多学生往往不能分清哪些面不需要计算,或是应该怎样计算?教材中计算表面积时是让学生先想象出展开图,再根据展开图各个图形的面积来选择计算出所求面积。
面对以往学生在学*时出现的较高的错误率,我在教学时便采用了让学生“钻”进长方体里求表面积的方法。
我首先让学生环顾四周,把我们的教室看做一个长方体,而我们就生活在这个长方体的世界里,而后我让学生分别指出这个长方体——教室的的顶点、相交于同一顶点的三条棱各叫什么?屋顶的面怎么求?前后的面怎么求?在竞赛的氛围中同学们都能很快地说出每个面的面积的求法。接着我要求学生换方向,与原来方向成90度,接着提问:“现在前面的面积怎么求?左面呢?上面呢?”从而使学生明白,长方体摆放的位置不同,求每个面的面积所用的条件也有所不同,要根据具体的长方体摆放的位置,来决定求每个面的面积应该用哪些条件。经过这样训练,学生不但能理解每个面的长与宽和原来长方体的长、宽、高的关系,而且还能根据我所给出的数据说出每个面的面积,再算出长方体的表面积。在遇到计算特殊物体的表面积,如鱼缸、通风管、游泳池等,我启发学生先钻进“盒子”里,再想象应该计算哪些面的面积,哪些面的面积不用算,这大大地提高了解答的正确率。
一般的教学是让学生想象展开图再进行计算,由于这个图是虚拟的,对学生的空间观念要求比较高。而“钻”进长方体,长方体的各个面就围绕在学生的四周,使学生感觉实在,从而利用直观的看就知道了哪个面不求,还可以用手比划一下,想清楚这个面的长与宽各是多少,再求出面积。这样的做法,对于空间观念比较弱的学困生来说,多了一根思维的“拐棍”。因此,在解决长方体的表面积实际问题时,我经常可以看到有些同学不时的抬起头或转过头看墙壁,有的还用手指偷偷比划着。我知道,他们此时,正“钻”进长方体里。
当然教学中仍存在着一些不足,如没有强调计算必须在单位统一的前提下才可以进行,造成一道练*题的错误率很高。这也是从一个侧面教育学生要养成良好的。
1、要给学生留有较大的时间和空间
一个问题的解决需要时间和空间,只有给学生留有较大的时间和空间,学生才能有所发现、有所创造。如问题:“用8个1立方厘米的小正方体凭借想象表示出一个表面积最大的长方体、一个表面积最小的长方体”展现在学生面前时,要留给学生充分的思考时间,这样才能充分激发学生的思维。常常我们教师为了急于获得知识的结果,用简单的方式,或似是引导实为灌输的方法,让学生沿着教师设计的“问题”通道到达知识的彼岸,用牺牲学生的思维强度来获取所谓的教学效率。想,如果这个问题不是学生自己想出来的,而是教师给于“启发”、“点拨”,学生知道了:“噢!原来是这样。”还谈得上学生的思维得到了什么发展吗?学生思维的发展,就是在想的过程中,就是在从“想不出”到“想出来”的过程中获得发展的。越是对遇到的问题百思不得其解时,学生的思维活动越是积极,一旦问题解决,他们的思维也就得到了一种令人惊喜的发展。当然,每一节课的教学时间是有限的,在有限的时间内,能不能把尽可能多的时间和空间留给学生学*?再说,今天给学生留有了充足的时间和空间,学生得到了很好的发展,那么,在今后学生就会有更大的收获和发展。欲速则不达,我们现在的教育不就是常常为了急于求成,造成留给学生要记忆的东西不少,学会思维的东西却不多这一大遗憾吗?
2、学生拥有不可估量的潜力
当我把问题:“用8个1立方厘米的小正方体凭借想象表示出一个表面积最大的长方体、一个表面积最小的长方体”展现在学生面前时,发现并不如我所预料的学生无法解决。有的学生说出了:长8厘米、宽1厘米、高1厘米,长4厘米、宽2厘米、高1厘米,长2厘米、宽2厘米、高2厘米,还有的学生画出草图。让我深深体会到学生确实拥有不可估量的潜力。只要我们为学生创设出一个能展现他们才能的时间和空间,隐藏在学生头脑中的潜力就会如埋藏在地下的能量喷涌而出。
长方体的表面积这部分内容,是在学生认识并掌握了长方体和正方体特征的基础上教学的,也是学生学*几何知识由*面计算到立体计算的开始,是本单元的重要内容。
教学时,我拿出一个长方体纸盒,又拿出一张彩纸,并用彩纸把纸盒包起来,问同学们:“你们知道包装这个长方体纸盒需要用多少彩纸吗?你能求出来吗?”同学们在短暂的思考后说:“可以把彩纸打开求它的面积。”还有的同学说:“可以把长方体纸盒打开,求出它的面积也是所需彩纸的面积。”我在肯定了他们的说法后继续问同学们:“长方体打开后还是原来的几个面?”进而说明长方体6个面的总面积就是长方体的表面积,然后引导学生观察点出长方体的上、下、前、后、左、右6个面,并用小黑板出示问题:
1、长方体的6个面可以分为几组?每组有几个面?
2、各组的长和宽分别是长方体相对应的长、宽、高的哪个长度?
3、你能总结出长方体的表面积计算公式吗?出示后我马上组织同学们开展小组合作学*,并汇报讨论结果,从而归纳出:可以分为3组,每组2个面,上下面一组,左右面一组,前后面一组,上下面的面积=长x高x2,左右面的面积=宽x高x2,前后面的面积=长x宽x2,长方体的表面积=长x高x2+宽x高x2+长x宽x2,之后再着重通过实物演示强化学生记住长x高、长x宽、宽x高各是长方体的哪个面。在学生掌握了长方体的表面积公式后,教师就举出一些长方体实物,给出长、宽、高,引导学生运用公式计算长方体的表面积。
在本节课的教学中,我让学生通过自主探究、小组合作获得了新知,既激发了学生的学*兴趣,又培养了学生的思维能力和合作意识。在操作过程中,学生理解了表面积的意义,总结出了表面积的计算方法并运用它解决一些简单的实际问题,但在课后我也发现了许多不足之处:在遇到解决实际问题时,有些同学很难与实际物体联系起来,比如说:求长方体通风管的表面积,长方体游泳池的底部和四周抹水泥,求抹水泥部分的面积是多少等方面的问题,学生往往不能联系实物,还是一味的求6个面的总面积。
我们的数学知识要解决生活中的实际问题,而我们的学生却缺乏这种解决实际问题的能力,学到的知识不会灵活运用,不能举一反三,导致在解决实际问题的时候会出现这样或那样的错误,我觉得在学生利用公式解决了一些常规问题后,我们是否应该适时举出几种特殊情况来引起学生的注意,打破他们的思维定势呢?让他们认识到不是所有的关于长方体的表面积都是求6个面的面积,而要根据实际情况来区别对待,我们更应该带领学生走进生活,让学生对周围的实物、建筑有更进一步的了解,让他们在生活中也获取知识。
本节课的教学本着让学生自主探究的要求,让学生充分自主学*、研究、讨论和操作,从而得出结论,激发学生的学*兴趣,培养学生思维能力和实践能力。并在操作的过程中,让学生理解表面积的意义,总结出求表面积的计算方法并能学会运用。
但是由于大部分学生是外来学生,缺乏一定的生活经验,导致他们缺乏解决实际问题的`能力,没能真正学以致用。如在解决课本练*中的给洗衣机做一个布罩时,求至少需要多大面积的布,部分学生没有直接接触过洗衣机,对给它做布罩需要做几个面不清楚,因而影响解决该题。另外,课本练*中要为一长为10厘米,宽为8厘米,高位2厘米的长方体选择一合适尺寸的包装纸,几乎全部的学生都选择了第一种包装纸,理由是这两者的面积刚好相等。正是由于学生对如何包装物体缺乏一种生活的认识,所以他们没法做出教参所要求的答案。
因此,我们教师在教学该部分时,应尽量让学生获得更多对生活的认识,加强直观教学,让他们在生活中学*、在生活中获取知识。
通过本节课的教学,我总结出以下两点:
1、理解表面积的定义上,出示一个长方体纸盒,要包装礼盒,需要多大面积的纸片,求什么,把一个生活实际问题转化为一个数学问题,也就是要去求这个长方体的表面积,让孩子们指一指表面积在哪里。这个时候不急着去计算这个长方体的表面积,而是让孩子们想一想在我们的生活场景中哪些地方需要计算表面积的,孩子们举例了给教室贴瓷砖、做纸箱、做鱼缸、给教室的们刷漆,等等,这个时候我会追问你的场景中的表面积在哪里,像鱼缸是会少一个面的。这样为学生建立了空间想象的表象认识,学生在后面完成解决问题时就会在脑海里有立体图形的浮现。
2、在探索具体计算表面积我关注了几下几点,第一,先想计算策略,让孩子们说一说打算怎么计算,那孩子们都会说,把六个面加起来,有的孩子说了不必每一个面都求,对面相等,只要求出三组面。第二,让孩子们说清楚计算的过程,有条不紊的阐述自己的计算过程,我就追问为什么要乘以2这样的`细节问题。第三,引导孩子去概括总结计算的公式,最后大家一起总结得到一个公式,用长宽高来表示这个公式。同时出示长和宽都相等的长方体,让学生体会,按公式计算不会重复或遗漏,这样的计算表面积更加是准确。第四、在出示长方体与正方体表面积公式之后,着手让孩子们去比较长方体与正方体表面积计算有什么相同与不同之处,我觉得这里的相同之处十分重要,让孩子们明白求一个完整的长方体和正方体的表面积实际上是在求外面六个面的面积总和,无论孩子们的计算过程如何,公式又是如何,本质就是求那六个面的面积之和。
上个星期学*了长方体的表面积,效果还不错。
开始上课的时候,我先让学生复*了一下,什么是长方体,长方体有哪些特点?
然后,让学生理解表面积,我班的学生基础比较差,所以,我用最简单的方法说:表面积其实就是表面的面积。然后,让学生触摸这些面。让学生形成了表面积的表象。然后,我告诉学生说:“表面积其实就是所有面的面积的和。那么长方体的表面积就是几个面的面积的和?”学生回答说:“六个面?”然后,我让学生分别求出来上、下、前、后、左、右这六个面的面积。然后,学生通过学*得出:上下面=长×宽×2,前后面=长×高×2,左右面=宽×高×2。这时,学生虽然得出了结论,但是这个公式太长,很多同学记不住。于是,我在黑板上画了一个三角形。在三角形的三个顶点上分别写出长宽高,再次引导学生说长方体表面积的公式,学生一下子就记住了。并且记得很牢固。
通过这件事,我们明白,一是要让学生学得好,学得劳,就要把知识尽量的简单化、有趣化、直观化,这样才能让学生有兴趣学,有信心学。二是不要把我们想当然的事情,强加给学生,我们会的,就认为学生也会,我们认为简单的,学生也认为简单。我们要尽量吃透教材,把握教材。把教材的内容,简单、直观、形象的教给学生。而不是,直搬教材,生搬硬套,学生就学不好,学不牢,记不住。
《长方体的表面积》是小学数学五年级下册的内容,这部分知识的教学是在学生认识并掌握了长方体、正方体特征的基础上教学的,也是学生学*几何知识由*面计算扩展到立体计算的开始,是本单元的重要内容。开课时我用学生亲手制作的长方体的实际的学具引入新课,学生自己观察长方体有六个面,要想知道长方体的六个面到底有多大,请你利用小组中的学具帮助老师解决。学生通过思考与交流,认识到“要想知道长方体的六个面到底有多大,必须计算出六个面的面积总和”,这时我因势利导指出:“长方体六个面的面积之和叫做它的表面积”,然后再让学生摸一摸、说一说。这样设计既能刺激学生产生好奇心,又能唤起学生强烈的参与意识,产生学*的需要,使学生在自主的观察与思考中理解了表面积的意义,为探索长方体和正方体表面积的计算打下了良好的基础。
数学于生活,同时又服务于生活。应用学到的知识解决实际生活中的问题,不但能使学生感受数学与实际生活是密切联系的,而且能培养学生的创新精神。为此,我出示了以下几种情况的练*:比如无盖的玻璃鱼缸、没有底面的洗衣机罩,学生认识到长、正方体的表面积也会遇到许多特殊情况,我们求表面积不可以千篇一律要根据实际情况具体问题具体分析。
因为是从*面到立体,从二维到三维,**看似简单,而对小学生却有一定的难度。学生的作业反映出来的问题屡见不鲜,因为与实际生活联系比较密切的例子比比皆是,且各有特点,有些题学生考虑不全面,有些却是无所适从,刚刚学过长方体和正方体的表面积,有个别学生不分青红皂白,不认真审题,如果在课堂上我能够抓住学生实践的过程适时把展开的*面图做出点拨效果会更好。比如教科书练*六中的练*题,要在游泳池的四周和底面都贴上瓷砖,需要贴多少*方米的瓷砖,有些学生不认真审题最后求出来的是六个面的面积,紧接着下一道题是学校要粉刷教室,扣除门窗的面积后,学生没有考虑到地面不用粉刷,从而也是求的六个面的面积,与实际生活联系后,他们就会恍然大悟,而反映出他们理解问题的片面性,不够灵活。有些学生缺乏空间想象力,还是分不清楚具体的面应该怎样求才是它的面积,而且学生缺乏耐心细致,做不到具体情况具体分析,因此在解决实际问题时,失误较多。以后的教学中我应注重通过观察物体、制作模型、设计图案等活动,发展学生的空间观念。
老师们在讨论《长方体的表面积》一节时,常常会有几点疑惑:一是前节刚上过《展开与折叠》,这节有什么必要再把长方体再展开?二是教材为什么要安排“估算”?三是教材中的正方体图形有什么必要同时给出三个棱长的数据?对这几个问题,我是这样看的:
一、本节为什么要把长方体再展开?
立体图形的表面积,求的是面积。既是面积,就是*面几何的研究对象,因此,从逻辑上说,教材在这里必须要把立体问题转化为*面问题,才能用面积的概念去给表面积下定义。在*面几何里,所讨论问题的前提都是“在同一*面上”,因此,要再次展开。
三维立体空间与二维*面空间的图形的相互转换,是空间想象能力的重要组成部分。由于技术的限制,对于立体图形,目前我们在教材里呈现给学生的只能是“三维示意图”(实际上是二维图形)。因此,学生的三维空间想象能力常常具体地体现为“让‘三维示意图’立起来”。而学过立体几何的人都知道,未来学生解决立体几何问题时,最重要的意识与能力就是“转化”,即把三维问题转化为二维。本节对立体图形与*面展开图形的对应关系的讨论,意在加强面与体的联系,培养学生的转化意识,进一步发展学生的空间想象能力。
《长方体和正方体表面积》教学反思
《长方体和正方体表面积》的教学反思
《长方体和正方体的表面积》数学教学反思
《长方体和正方体的表面积》教学反思
长方体和正方体的表面积教学反思
《长方体表面积》教学反思
《长方体和正方体的表面积》教案
《长方体的表面积》教学反思
长方体的表面积的教学反思
长方体的表面积教学设计
《长方体和正方体》教学反思
《长方体和正方体的体积》教学反思
《长方体和正方体的认识》教学反思
长方体和正方体数学方案
长方体和正方体教学设计
长方体和正方体教案
长方体、正方体的认识教学设计
长方体和正方体的认识教学设计
《长方体和正方体体积》数学教案
《长方体和正方体的认识》优秀教学设计
《圆柱的表面积》数学教学反思
圆柱的表面积教学反思
《圆柱的表面积》教学反思
《表面积的变化》教学反思
《长方体的认识》教学反思
数学《圆柱的表面积》教学设计
《圆柱的表面积》优秀教学反思
长方体的体积教学反思
《长方体的认识》的教学反思
圆柱表面积教学设计