关于高三生物知识点归纳的文字专题页,提供各类与高三生物知识点归纳相关的句子数据。我们整理了与高三生物知识点归纳相关的大量文字资料,以各种维度呈现供您参考。如果高三生物知识点归纳未能满足您的需求,请善用搜索找到更适合的句子语录。
蛋白质
蛋白质的基本组成单位是氨基酸,生物体中组成蛋白质的氨基酸大约有20种,在结构上都符合结构通式。氨基酸分子间以肽键的方式互相结合。由两个氨基酸分子缩合而成的化合物称为二肽,由多个氨基酸分子缩合而成的化合物称为多肽,其通常呈链状结构,称为肽链。一个蛋白质分子可能含有一条或几条肽链,通过盘曲﹑折叠形成复杂(特定)的空间结构。
蛋白质分子结构具有多样性的特点,其原因是:构成蛋白质的氨基酸种类不同、数目成百上千、氨基酸排列顺序千变万化、多肽链形成的空间结构千差万别。由于结构的多样性,蛋白质在功能上也具有多样性的特点,其功能主要如下:
(1)结构蛋白,如肌肉、载体蛋白、血红蛋白;
(2)信息传递,如胰岛素
(3)免疫功能,如抗体;
(4)大多数酶是蛋白质如胃蛋白酶
(5)细胞识别,如细胞膜上的`糖蛋白。总而言之,一切生命活动都离不开蛋白质,蛋白质是生命活动的主要承担者。
脱水缩合:一个氨基酸分子的氨基(-NH2)与另一个氨基酸分子的羧基(-COOH)相连接,同时失去一分子水。
有关计算:
①肽键数=脱去水分子数=氨基酸数目-肽链数
②至少含有的羧基(-COOH)或氨基数(-NH2)=肽链数
核酸
核酸是遗传信息的载体,是一切生物的遗传物质,对于生物体的遗传和变异、蛋白质的生物合成有极其重要作用。核酸包括脱氧核糖核酸(DNA)和核糖核酸(RNA)两大类,基本组成单位是核苷酸,由一分子含氮碱基﹑一分子五碳糖和一分子磷酸组成。组成核酸的碱基有5种,五碳糖有2种,核苷酸有8种。
脱氧核糖核酸简称DNA,主要存在于细胞核中,细胞质中的线粒体和叶绿体也是它的载体。
核糖核酸简称RNA,主要存在于细胞质中。对于有细胞结构(同时含DNA和RNA)的生物,其遗传物质就是DNA;没有细胞结构的病毒,有的遗传物质是DNA如:噬菌体等;有的遗传物质是RNA如:烟草花叶病毒、HIV等
细胞中的糖类和脂质
糖类分子都是由C、H、O三种元素组成。糖类是细胞的主要能源物质。
糖类可分为单糖、二糖和多糖等几类。单糖是不能再水解的糖,常见的有葡萄糖、果糖、半乳糖、核糖、脱氧核糖,其中葡萄糖是细胞的重要能源物质,核糖和脱氧核糖一般不作为能源物质,它们是核酸的组成成分;二糖中蔗糖和麦芽糖是植物糖,乳糖、糖原是动物糖;多糖中糖原是动物糖,淀粉和纤维素是植物糖,糖原和淀粉是细胞中重要的储能物质。
脂质主要是由CHO3种化学元素组成,有些还含有P(如磷脂)。脂质包括脂肪、磷脂、和固醇、。脂肪是生物体内的储能物质。除此以外,脂肪还有保温、缓冲、减压的作用;磷脂是构成包括细胞膜在内的膜物质重要成分;固醇类物质主要包括胆固醇、性激素、维生素D等,这些物质对于生物体维持正常的生命活动,起着重要的调节作用。
多糖、蛋白质、核酸等都是生物大分子,组成它们的基本单位分别是单糖(葡萄糖)﹑氨基酸和核苷酸,这些基本单位称为单体,这些生物大分子就称为单体的多聚体,每一个单体都以若干个相连的碳原子构成的碳链为基本骨架,由许多单体连接成多聚体。
细胞内有机物质的鉴定
糖类中的还原糖(葡萄糖、果糖)能与斐林试剂发生作用,生成砖红色沉淀;
脂肪可以被苏丹Ⅳ染成橘黄色;蛋白质与双缩脲试剂发生作用,产生紫色反应。在还原糖的检测中,斐林试剂甲液和乙液应等量混合均匀后再使用,并且要水裕加热;在蛋白质的检测中,在组织样液中应先加入双缩脲试剂A液1ml,再加入双缩脲试剂B液4滴,不需加热。
甲基绿能使DNA呈现绿色,吡罗红能使RNA呈现红色,因此利用这两种染色剂将细胞染色,可以显示DNA和RNA在细胞中的分布。在此实验中,盐酸的作用是改变膜的通透性,加速色素进入细胞。用人的口腔上皮细胞做实验材料,此实验的步骤是制片、水解、冲洗涂片、染色、观察。
名词:
1、染色体组型:也叫核型,是指一种生物体细胞中全部染色体的数目、大小和形态特征。观察染色体组型的时期是有丝分裂的中期。
2、性别决定:一般是指雌雄异体的生物决定性别的方式。
3、性染色体:决定性别的染色体叫做性染色体。
4、常染色体:与决定性别无关的染色体叫做常染色体。
5、伴性遗传:性染色体上的基因,它的遗传方式是与性别相联系的,这种遗传方式叫做伴性遗传。
语句:
1、染色体的四种类型:中着丝粒染色体,亚中着丝粒染色体,*端着丝粒染色体,端着丝粒染色体。
2、性别决定的类型:(1)XY型:雄性个体的体细胞中含有两个异型的性染色体(XY),雌性个体含有两个同型的性染色体(XX)的性别决定类型。(2)ZW型:与XY型相反,同型性染色体的个体是雄性,而异型性染色体的个体是雌性。蛾类、蝶类、鸟类(鸡、鸭、鹅)的性别决定属于“ZW”型。3、色盲病是一种先天性色觉障碍病,不能分辨各种颜色或两种颜色。其中,常见的色盲是红绿色盲,患者对红色、绿色分不清,全色盲极个别。色盲基因(b)以及它的等位基因——正常人的B就位于X染色体上,而Y染色体的相应位置上没有什么色觉的基因。
4、人的正常色觉和红绿色盲的基因型(在写色觉基因型时,为了与常染色体的基因相区别,一定要先写出性染色体,再在右上角标明基因型。):色盲女性(XbXb),正常(携带者)女性(XBXb),正常女性(XBXB),色盲男性(XbY),正常男性(XBY)。由此可见,色盲是伴X隐性遗传病,男性只要他的X上有b基因就会色盲,而女性必须同时具有双重的b才会患病,所以,患男>患女。
5、色盲的遗传特点:男性多于女性一般地说,色盲这种病是由男性通过他的女儿(不病)遗传给他的外孙子(隔代遗传、交叉遗传)。色盲基因不能由男性传给男性)。
6、血友病简介:症状——血液中缺少一种凝血因子,故凝血时间延长,或出血不止;血友病也是一种伴X隐性遗传病,其遗传特点与色盲完全一样。
名词:
1、染色体组型:也叫核型,是指一种生物体细胞中全部染色体的数目、大小和形态特征。观察染色体组型的时期是有丝分裂的中期。
2、性别决定:一般是指雌雄异体的生物决定性别的方式。
3、性染色体:决定性别的.染色体叫做性染色体。
4、常染色体:与决定性别无关的染色体叫做常染色体。
5、伴性遗传:性染色体上的基因,它的遗传方式是与性别相联系的,这种遗传方式叫做伴性遗传。
语句:
1、染色体的四种类型:中着丝粒染色体,亚中着丝粒染色体,*端着丝粒染色体,端着丝粒染色体。
2、性别决定的类型:(1)XY型:雄性个体的体细胞中含有两个异型的性染色体(XY),雌性个体含有两个同型的性染色体(XX)的性别决定类型。(2)ZW型:与XY型相反,同型性染色体的个体是雄性,而异型性染色体的个体是雌性。蛾类、蝶类、鸟类(鸡、鸭、鹅)的性别决定属于“ZW”型。3、色盲病是一种先天性色觉障碍病,不能分辨各种颜色或两种颜色。其中,常见的色盲是红绿色盲,患者对红色、绿色分不清,全色盲极个别。色盲基因(b)以及它的等位基因——正常人的B就位于X染色体上,而Y染色体的相应位置上没有什么色觉的基因。
4、人的正常色觉和红绿色盲的基因型(在写色觉基因型时,为了与常染色体的基因相区别,一定要先写出性染色体,再在右上角标明基因型。):色盲女性(XbXb),正常(携带者)女性(XBXb),正常女性(XBXB),色盲男性(XbY),正常男性(XBY)。由此可见,色盲是伴X隐性遗传病,男性只要他的X上有b基因就会色盲,而女性必须同时具有双重的b才会患病,所以,患男>患女。
5、色盲的遗传特点:男性多于女性一般地说,色盲这种病是由男性通过他的女儿(不病)遗传给他的外孙子(隔代遗传、交叉遗传)。色盲基因不能由男性传给男性)。
6、血友病简介:症状——血液中缺少一种凝血因子,故凝血时间延长,或出血不止;血友病也是一种伴X隐性遗传病,其遗传特点与色盲完全一样。
名词:
1生物的富集作用:指一些污染物(如重金属、化学农药),通过食物链在生物体内大量积聚的过程。这些污染物一般的特点是化学性质稳定而不易分解,在生物体内积累不易排出。因此生物的富集作用会随着食物链的延长而不断加强。
2、富营养化:由于水体中氮、磷等植物必需元素含量过多,导致藻类等大量繁殖。藻类的的唿吸作用及死亡藻类的.分解作用消耗大量的氧,并分解出有毒物质,致使水体处于严重的缺氧状态,引起水质量恶化和鱼群死亡的现象
.3、水华:在淡水湖泊中发生富营养化现象。
4、赤潮:在海洋中发生富营养化现象。
语句:
1、环境污染主要包括:有大气污染、水污染、土壤污染、固体废弃物污染与噪声污染。
2、大气污染的危害:
①我国大气污染类型是煤炭型污染,主要污染物有烟尘、二氧化硫,此外,还有氮氧化物和一氧化碳。
②危害:直接危害人类和其它生物,导致吸系统疾病,(如气管炎、哮喘、肺气肿、等。)
③致癌物主要有3,4—苯并芘和含Pb的化合物。尤其是3,4—苯并芘引起肺癌的作用烈。
④可以通过水体、土壤及植物进而危害人及动物.
3、水污染的危害:
①水俣病事件:汞在水中转化成甲基汞后,富集在鱼、虾体内,人若长期食用了这些食物就会危害中枢神经系统,有运动失调,痉挛、麻痹、语言和听力发生障碍等症状,甚至死亡。
②水体中过量的N、P主要来自含有化肥的农田用水,城市生活污水和工业废水。
③赤潮和水华的形成都是水体富营养化的结果。
4、土壤污染的危害:
①“镉米”事件:土壤被镉污染后,会经过生物的富集作用进入人、畜体内,引起骨痛,自然骨折,骨缺损,导致全身性神经剧痛等症,最终死亡。影响植物的生长发育危害动物和人的生存。
5、噪声污染的危害:损伤听力,干扰睡眠,诱发多种疾病,影响心理健康。
dna双螺旋结构特点
①两条DNA互补链反向*行。
②由脱氧核糖和磷酸间隔相连而成的亲水骨架在螺旋分子的外侧,而疏水的碱基对则在螺旋分子内部,碱基*面与螺旋轴垂直,螺旋旋转一周正好为10个碱基对,螺距为3。4nm,这样相邻碱基*面间隔为0。34nm并有一个36的夹角。
③DNA双螺旋的表面存在一个大沟(major groove)和一个小沟(minor groove),蛋白质分子通过这两个沟与碱基相识别。
④两条DNA链依靠彼此碱基之间形成的氢键而结合在一起。根据碱基结构特征,只能形成嘌呤与嘧啶配对,即A与T相配对,形成2个氢键;G与C相配对,形成3个氢键。因此G与C之间的连接较为稳定。
⑤DNA双螺旋结构比较稳定。维持这种稳定性主要靠碱基对之间的氢键以及碱基的堆集力(stacking force)。
dna双螺旋结构
DNA的双螺旋结构,脱氧核糖与磷酸相间排列在外侧,形成两条主链(反向*行),构成DNA的基本骨架。两条主链之间的横档是碱基对,排列在内侧。相对应的两个碱基通过氢键连结形成碱基对,DNA一条链上的碱基排列顺序确定了,根据碱基互补配对原则,另一条链的碱基排列顺序也就确定了。
dna双螺旋结构模型要点
(1)两条多核苷酸链以相反的*行缠结,依赖成对的碱基上的氢键结合形成双螺旋状,亲水的脱氧核糖基和磷酸基骨架位于双链的外侧,而碱基位于内侧,两条链的碱基之间以氢键相结合,一条链的走向是5’到3’,另一条链的走向是3’到5’;
(2)碱基*面向内延伸,与双螺旋链成垂直状;
(3)向右旋,顺长轴方向每隔0。34nm有一个核苷酸,每隔3。4nm重复出现同一结构;
(4)A与T配对,其间距离1。11nm;G与C配对,其间距离为1。08nm,两者距离几乎相等,以便保持链间距离相等;
(5)在结构上有深沟和浅沟;
(6)DNA双螺旋结构稳定的维系横向稳定靠两条链间互补碱基的氢键维系,纵向则靠碱基*面间的疏水性递积力维持。
1、向性运动:是植物体受到单一方向的外界刺激(如光、重力等)而引起的定向运动。
2、感性运动:由没有一定方向性的外界刺激(如光暗转变、触摸等)而引起的局部运动,外界刺激的方向与感性运动的方向无关。
3、激素的特点:①量微而生理作用显著;②其作用缓慢而持久。激素包括植物激素和动物激素。植物激素:植物体内合成的、从产生部位运到作用部位,并对植物体的生命活动产生显著调节作用的微量有机物;动物激素:存在动物体内,产生和分泌激素的器官称为内分泌腺,内分泌腺为无管腺,动物激素是由循环系统,通过体液传递至各细胞,并产生生理效应的。
4、胚芽鞘:单子叶植物胚芽外的锥形套状物。胚芽鞘为胚体的第一片叶,有保护胚芽中更幼小的叶和生长锥的作用。胚芽鞘分为胚芽鞘的尖端和胚芽鞘的下部,胚芽鞘的尖端是产生生长素和感受单侧光刺激的部位和胚芽鞘的下部,胚芽鞘下面的部分是发生弯曲的部位。
5、琼脂:能携带和传送生长素的作用;云母片是生长素不能穿过的。
6、生长素的横向运输:发生在胚芽鞘的尖端,单侧光刺激胚芽鞘的尖端,会使生长素在胚芽鞘的尖端发生从向光一侧向背光一侧的运输,从而使生长素在胚芽鞘的尖端背光一侧生长素分布多。
7、生长素的竖直向下运输:生长素从胚芽鞘的尖端竖直向胚芽鞘下面的部分的运输。
8、生长素对植物生长影响的两重性:这与生长素的浓度高低和植物器官的种类等有关。一般说,低浓度范围内促进生长,高浓度范围内抑制生长。
9、顶端优势:植物的顶芽优先生长而侧芽受到抑制的现象。由于顶芽产生的生长素向下运输,大量地积累在侧芽部位,使这里的生长素浓度过高,从而使侧芽的生长受到抑制的缘故。解出方法为:摘掉顶芽。顶端优势的原理在农业生产实践中应用的实例是棉花摘心。
10、无籽番茄(黄瓜、辣椒等):在没有受粉的番茄(黄瓜、辣椒等)雌蕊柱头上涂上一定浓度的生长素溶液可获得无籽果实。要想没有授粉,就必须在花蕾期进行,因番茄的花是两性花,会自花传粉,所以还必须去掉雄蕊,来阻止传粉和**的发生。无籽番茄体细胞的染色体数目为2N。
有氧呼吸与无氧呼吸的区别和联系
①场所:有氧呼吸第一阶段在细胞质的基质中,第二、三阶段在线粒体
②O2和酶:有氧呼吸第一、二阶段不需O2,;第三阶段:需O2,第一、二、三阶段需不同酶;无氧呼吸--不需O2,需不同酶。
③氧化分解:有氧呼吸--彻底,无氧呼吸--不彻底。
④能量释放:有氧呼吸(释放大量能量38ATP)---1mol葡萄糖彻底氧化分解,共释放出2870kJ的能量,其中有1161kJ左右的能量储存在ATP中;无氧呼吸(释放少量能量2ATP)--1mol葡萄糖分解成乳酸共放出196.65kJ能量,其中61.08kJ储存在ATP中。⑤有氧呼吸和无氧呼吸的第一阶段相同。
呼吸作用的意义
为生物的生命活动提供能量。为其它化合物合成提供原料。
关于呼吸作用的计算规律
①消耗等量的葡萄糖时,无氧呼吸与有氧呼吸产生的二氧化碳物质的量之比为1:3
②产生同样数量的ATP时无氧呼吸与有氧呼吸的葡萄糖物质的量之比为19:1。如果某生物产生二氧化碳和消耗的氧气量相等,则该生物只进行有氧呼吸;如果某生物不消耗氧气,只产生二氧化碳,则只进行无氧呼吸;如果某生物释放的二氧化碳量比吸收的氧气量多,则两种呼吸都进行。
呼吸作用产生ATP的生理过程
有氧呼吸、光反应、无氧呼吸(暗反应不能产生)。在绿色植物的叶肉细胞内,形成ATP的场所是:细胞质基质(无氧呼吸)、叶绿体基粒(光反应)、线粒体(有氧呼吸的主要场所)
1、染色体变异包括染色体结构的变异(染色体上的基因的数目和排列顺序发生改变),染色体数目变异。
2、多倍体育种:
a、成因:细胞有丝分裂过程中,在染色体已经复制后,由于外界条件的剧变,使细胞分裂停止,细胞内的染色体数目成倍增加。(当细胞有丝分裂进行到后期时破坏纺锤体,细胞就可以不经过末期而返回间期,从而使细胞内的染色体数目加倍。)
b、特点:营养物质的含量高;但发育延迟,结实率低。
c、人工诱导多倍体在育种上的应用:常用方法---用秋水仙素处理萌发的种子或幼苗;秋水仙素的作用---秋水仙素抑制纺锤体的形成;实例:三倍体无籽西瓜(用秋水仙素处理二倍体西瓜幼苗得到四倍体西瓜;用二倍体西瓜与四倍体西瓜杂交,得到三倍体的西瓜种子。三倍体西瓜联会紊乱,不能产生正常的配子。)、八倍体小黑麦。
3、单倍体育种:形成原因:由生殖细胞不经过**作用直接发育而成。例如,蜜蜂中的雄蜂是单倍体动物;玉米的花粉粒直接发育的植株是单倍体植物。特点:生长发育弱,高度不孕。单倍体在育种工作上的应用常用方法:花药离体培养法。意义:大大缩短育种年龄。单倍体的优点是:大大缩短育种年限,速度快,单倍体植株染色体人工加倍后,即为纯合二倍体,后代不再分离,很快成为稳定的新品种,所培育的种子为绝对纯种。
4、一般有几个染色体组就叫几倍体。如果某个体由本物种的配子不经**直接发育而成,则不管它有多少染色体组都叫“单倍体”。
5、生物育种的方法总结如下:
①诱变育种:用物理或化学的因素处理生物,诱导基因突变,提高突变频率,从中选择培育出优良品种。实例---青霉素高产菌株的培育。
②杂交育种:利用生物杂交产生的基因重组,使两个亲本的优良性状结合在一起,培育出所需要的优良品种。实例---用高杆抗锈病的小麦和矮杆不抗锈病的小麦杂交,培育出矮杆抗锈病的新类型。
③单倍体育种:利用花药离体培养获得单倍体,再经人工诱导使染色体数目加倍,迅速获得纯合体。单倍体育种可大大缩短育种年限。
④多倍体育种:用人工方法获得多倍体植物,再利用其变异来选育新品种的方法。(通常使用秋水仙素来处理萌发的种子或幼苗,从而获得多倍体植物。)实例---三倍体无籽西瓜和八倍体小黑麦的培育(6n普通小麦与2n黑麦杂交得4n后代,再经秋水仙素使染色体数目加倍至8n,这就是8倍体小黑麦)。
走*细胞
●细胞是生物体的结构和功能的基本单位;细胞是一切动植物结构的基本单位。病毒没有细胞结构。
●真核细胞和原核细胞的主要区别是有无以核膜为界限的细胞核。
●细胞学说的主要内容:细胞是一个有机体,一切动植物都由细胞发育而来,并由细胞和细胞的产物所构成;细胞是一具相对独立的单位,既有它自己的生命,又对与其他细胞共同组成的整体的生命起作用;新细胞可以从老细胞中产生。
●生命系统的结构层次:细胞→组织→器官→系统→个体→种群→群落→生态系统→生物圈。
组成细胞的分子
●细胞中的化学元素,分大量元素和微量元素。组成生物体的化学元素在无机自然界都可以找到,没有一种化学元素是生物界所特有的,说明生物界和非生物界具统一性。
●细胞与与非生物相比,各种元素的相对含量又大不相同,说明生物界与非生物界还具有差异性。
●细胞内含量最多的有机物是蛋白质。蛋白质是以氨基酸为基本单位构成的生物大分子。每种氨基酸分子至少都含有一个氨基(-NH2)和一个羧基(-COOH),并且都有一个氨基和一个羧基连接在同一个碳原子上。连接两个氨基酸分子的化学键(-NH-CO-)叫做肽键。
●一切生命活动都离不开蛋白质,蛋白质是生命活动的主要承担者。蛋白质的功能有:结构蛋白、催化作用(酶)、运输载体、信息传递(激素)、免疫(抗体)等。
●核酸是由核苷酸(由一分子含氮碱基、一分子五碳糖和一分子磷酸组成)连接而成的长链,是一切生物的遗传物质。是细胞内携带遗传信息的物质,在生物体的遗传、变异和蛋白质的.生物合成中具有极其重要的作用。核酸分DNA和RNA两种。DNA由两条脱氧核苷酸链构成,碱基是A、T、G、C。RNA由一条核糖核苷酸链构成,碱基是A、U、G、C。
●糖类是细胞的主要能源物质,大致分为单糖、二糖和多糖。其基本组成单位是葡萄糖。植物体内的储能物质是淀粉,人和动物体内的储能物质是糖原(肝糖原和肌糖原)。
●脂质分脂肪、磷脂和固醇等。脂肪是细胞内良好的储能物质;磷脂是构成生物膜的重要成分;胆固醇是构成细胞膜的重要成分,在人体内还参与血液中脂质的。
●生物大分子以碳链为骨架,由许多单体连接成多聚体。C是构成细胞的基本元素。
●一般地说,水在细胞的各种化学万成分中含量最多。水在细胞中以自由水和结合水两种形式存在,绝大部分是自由水。结合水是细胞结构和重要组成成分,自由水是细胞内的良好溶剂。
●细胞中大多数无机盐以离子形式存在。无机盐对于维持细胞和生物体的生命活动有重要作用。
细胞的基本结构
●细胞膜主要由脂质和蛋白质组成。磷脂双分子层是基本骨架,功能越复杂的细胞膜,蛋白质的种类和数量越多。细胞膜具一定的流动性这一结构特点,具选择透过性这一功能特性。细胞膜的功能有:将细胞与外界环境分隔开;控制物质进出细胞(控制作用是相对的);进行细胞间的信息交流。
●细胞壁对植物细胞有支持和保护作用。植物细胞壁的主要成分是纤维素和果胶。
●线粒体是活细胞进行有氧呼吸的主要场所。健那绿染液是专一性染线粒体的活细胞染料。
●叶绿体是绿色植物进行光合作用的场所。
●核糖体是细胞内将氨基酸合成为蛋白质的场所。
●内质网是细胞内蛋白质合成和加工,以及脂质合成的车间。
●高尔基体与动物细胞的分泌物和植物细胞的细胞壁的形成有关。
●溶酶体是消化车间。分离各种细胞器的方法是差速离心法。
●中心体与动物和某些低等植物细胞的有丝分裂有关。
●细胞器膜和细胞膜、核膜等结构,共同构成细胞的生物膜系统。在细胞与外部环境进行物质运输、能量转换和信息传递的过程中起着决定性作用。
植物细胞工程
1.理论基础(原理):细胞全能性
2.植物组织培养技术(b)
(1)过程:离体的植物器官、组织或细胞 ―――→愈伤组织 ―――→试管苗 ――→植物体
(2)用途:微型繁殖、作物脱毒、制造人工种子、单倍体育种、细胞产物的工厂化生产。
A 植物繁殖
微型繁殖:可以高效快速地实现种苗的大量繁殖
作物脱毒:采用茎尖组织培养来除去病毒(因为植物分生区附*的病毒极少或没有) 人工种子:以植物组织培养得到的胚状体、不定芽、顶芽和腋芽等为材料,经人工薄膜包装得到的种子。优点:完全保持优良品种的遗传特性,不受季节的限制;方便储藏和运输
B 作物新品种培育
单倍体育种:
a过程:植株(AaBb)通过减数分裂得到花粉(AB、Ab、aB、ab四种类型);对花粉进行花药离体培养(技术是植物组织培养);得到单倍体植株;对其幼苗时期进行秋水仙素处理;得到了正常的纯合二倍体植株(AABB、AAbb、aaBB、aabb四种类型)。
b 优点:明显缩短育种年限
C 突变体利用:在组织培养中会出现突变体,通过从有用的突变体中选育出新品种筛选抗病、抗盐、含高蛋白的突变体)
D 细胞产物的`生产:通过能够产生对人们有利的产物的细胞进行组织培养,从而让它们能够产生大量的细胞产物。
(3)地位:是培育转基因植物、植物体细胞杂交培育植物新品种的最后道工序。
3.植物体细
胞杂交技术
(1)过程:
(2)诱导融合的方法:物理法包括离心、振动、电刺激等。化学法一般是用聚乙二醇(PEG)作为诱导剂。
(3)意义:克服了远缘杂交不亲和的障碍。
一、基因工程的应用
1.植物基因工程
⑴抗虫转基因植物——减轻农药对环境的污染⑵抗病转基因植物⑶抗逆转基因植物 ⑷利用转基因改良植物的品质
2.动物基因工程
⑴提高动物生长速度⑵改善畜产品的品质⑶用转基因动物生产药物
⑷用转基因动物作器官移植的供体⑸基因工程药品的生产
3.基因治疗
⑴概念:把正常基因导入病人体内,使该基因表达产物发挥作用
⑵方法:①体外基因治疗②体内基因治疗
二、蛋白质工程
1.概念
以蛋白质分子的结构规律及其与生物功能的关系作为基础,通过基因修饰或基因合成,对现有蛋白质进行改造,或制造一种新的蛋白质,以满足人类的生产和生活的需求
2.崛起的缘由
基因工程只能生产自然界中已经存在的蛋白质。这些天然蛋白质是生物在长期进化过程中形成的,它们的结构和功能符合特定物种生存的需要,却不一定完全符合人类生产和生活的需要。
3.蛋白质工程的原理
⑴目的:根据人们对蛋白质功能的特定需求,对蛋白质的结构进行分子设计
⑵基本途径
预期蛋白质的功能→设计预期蛋白质的结构→推测应有的氨基酸序列→找到相对应的脱氧核苷酸序列(基因)
实验一:使用高倍显微镜观察几种细胞
1、是低倍镜还是高倍镜的视野大,视野明亮?为什么?
低倍镜的视野大,通过的光多,放大的倍数小;高倍镜视野小,通过的光少,但放大的倍数高。
2、为什么要先用低倍镜观察清楚后,把要放大观察的物像移至视野的中央,再换高倍镜观察?
如果直接用高倍镜观察,往往由于观察的对象不在视野范围内而找不到。因此,需要先用低倍镜观察清楚,并把要放大观察的物像移至视野的中央,再换高倍镜观察。
3、用转换器转过高倍镜后,转动粗准焦螺旋行不行?
不行。用高倍镜观察,只需转动细准焦螺旋即可。转动粗准焦螺旋,容易压坏玻片。
4、使用高倍镜观察的步骤和要点是什么?
答:(1)首先用低倍镜观察,找到要观察的物像,移到视野的中央。
(2)转动转换器,用高倍镜观察,并轻轻转动细准焦螺旋,直到看清楚材料为止。
5、总结:四个比例关系
a.镜头长度与放大倍数:物镜镜头越长,放大倍数越大,而目镜正好与之相反。
b.物镜头放大倍数与玻片距离:倍数越大(镜头长)距离越*。
c.放大倍数与视野亮度:放大倍数越大,视野越暗。
d.放大倍数与视野范围:放大倍数越大,视野范围越小。
实验二 检测生物组织中的糖类、脂肪和蛋白质
一、实验原理
某些化学试剂能使生物组织中的有关有机化合物,产生特定的颜色反应。
1、可溶性还原糖(如葡萄糖、果糖、麦芽糖)与斐林试剂发生作用,可生成砖红色的Cu 2O沉淀。
葡萄糖+ Cu ( OH )2 葡萄糖酸 + Cu 2O↓(砖红色)+ H 2O,即Cu ( OH ) 2被还原成Cu 2O,葡萄糖被氧化成葡萄糖酸。
2、脂肪可以被苏丹Ⅲ染液染成橘黄色(或被苏丹Ⅳ染液染成红色)。淀粉遇碘变蓝色。
3、蛋白质与双缩脲试剂发生作用,产生紫色反应。(蛋白质分子中含有很多肽键,在碱性NaOH溶液中能与双缩脲试剂中的Cu2+作用,产生紫色反应。)
二、实验材料
1、做可溶性还原性糖鉴定实验,应选含糖高,颜色为白色的植物组织,如苹果、梨。(因为组织的颜色较浅,易于观察。)
2、做脂肪的鉴定实验。应选富含脂肪的种子,以花生种子为最好,实验前一般要浸泡3~4小时(也可用蓖麻种子)。
3、做蛋白质的鉴定实验,可用富含蛋白质的黄豆或鸡蛋清。
三、实验注意事项
1、可溶性糖的鉴定
a.应将组成斐林试剂的甲液、乙液分别配制、储存,使用前才将甲、乙液等量混匀成斐林试剂;斐林试剂很不稳定,甲、乙液混合保存时,生成的Cu ( OH ) 2在70~900C下分解成黑色CuO和水;
b. 切勿将甲液、乙液分别加入苹果组织样液中进行检测。甲、乙液分别加入时可能会与组织样液发生反应,无Cu ( OH ) 2生成。
2、蛋白质的鉴定
a. A液和B液也要分开配制,储存。鉴定时先加A液后加B液;先加NaOH溶液,为Cu2+与蛋白质反应提供一个碱性的环境。A、B液混装或同时加入,会导致Cu2+变成Cu ( OH ) 2沉淀,而失效。
b、CuSO4溶液不能多加;否则CuSO4的蓝色会遮盖反应的真实颜色。
c. 蛋清要先稀释;如果稀释不够,在实验中蛋清粘在试管壁,与双缩脲试剂反应后会粘固在试管内壁上,使反应不容易彻底,并且试管也不易洗干净。
3、斐林试剂与双缩脲试剂的区别:
细胞的增殖
一、植物细胞有丝分裂各期的主要特点:
1、分裂间期
特点:完成DNA的复制和有关蛋白质的合成;
结果:每个染色体都形成两个姐妹染色单体,呈染色质形态。
2、前期
特点:①出现染色体、出现纺锤体②核膜、核仁消失;
染色体特点:①染色体散乱地分布在细胞中心附*②每个染色体都有两条姐妹染色单体。
3、中期
特点:①所有染色体的着丝点都排列在赤道板上 ②染色体的'形态和数目最清晰;
染色体特点:染色体的形态比较固定,数目比较清晰。故中期是进行染色体观察及计数的最佳时机。
4.后期
特点:①着丝点一分为二,姐妹染色单体分开,成为两条子染色体,并分别向两极移动。②纺锤丝牵引着子染色体分别向细胞的两极移动,这时细胞核内的全部染色体就*均分配到了细胞两极
染色体特点:染色单体消失,染色体数目加倍。
5.末期
特点:①染色体变成染色质,纺锤体消失。②核膜、核仁重现。③在赤道板位置出现细胞板,并扩展成分隔两个子细胞的细胞壁。
1、(1)感受光刺激的部位在胚芽鞘尖端
(2)向光弯曲的部位在胚芽鞘尖端下部
(3)产生生长素的部位在胚芽鞘尖端
2、胚芽鞘向光弯曲生长原因:
(1)横向运输(只发生在胚芽鞘尖端):在单侧光刺激下生长素由向光一侧向背光一侧运输
(2)纵向运输(极性运输):从形态学上端运到下端,不能倒运
(3)胚芽鞘背光一侧的生长素含量多于向光一侧(生长素分布不均,背光面多,向光面少),因而引起两侧的生长不均匀,从而造成向光弯曲。
生长素(温特,琼脂实验):吲哚乙酸(I高中生物必修三知识点)
3、植物激素(赤霉素,细胞素,脱落酸,乙烯):由植物体内产生、能从产生部位到作用部位,对植物的生长发育有显著影响的微量有机物。
4、色氨酸经过一系列反应可转变成生长素。
在植物体中生长素的产生部位:幼嫩的芽、叶和发育中的种子
生长素的分布:植物体的各个器官中都有分布,但相对集中在生长旺盛的部分。
5、植物体各个器官对生长素的敏感度不同:茎>芽>根
必修三生物的学*方法
树立正确的生物学观点,可以更迅速更准确地学*生物学知识。所以在生物学学*中,要注意树立以下生物学观点:
1.生命物质性观点。
生物体由物质组成,一切生命活动都有其物质基础。
2.结构与功能相统一的观点。
包括两层意思:一是有一定的结构就必然有与之相对应功能的存在;二是任何功能都需要一定的结构来完成。
3.生物的整体性观点。
系统论有一个重要的'思想,就是整体大于各部分之和,这一思想完全适合生物领域。不论是细胞水*、组织水*、器官水*,还是个体水*,甚至包括种群水*和群落水*,都体现出整体性的特点。
4.生命活动对立统一的观点。
生物的诸多生命活动之间,都有一定的关系,有的甚至具有对立统一的关系,例如,植物的光合作用和呼吸作用就是对立统一的一对生命活动。
5.生物进化的观点。
生物界有一个产生和发展的过程,所谓产生就是生命的起源,所谓发展就是生物的进化。生物的进化遵循从简单到复杂,从水生到陆生、从低等到高等的规律。
6.生态学观点。
基本内容是生物与环境之间是相互影响、相互作用的,也是相互依赖、相互制约的。生物与环境是一个不可分割的统一整体。
必修三生物的学*技巧
1.简化记忆法。
即通过分析教材,找出要点,将知识简化成有规律的几个字来帮助记忆。
2.联想记忆法。
即根据教材内容,巧妙地利用联想帮助记忆。
3.对比记忆法。
在生物学学*中,有很多相*的名词易混淆、难记忆。对于这样的内容,可运用对比法记忆。对比法即将有关的名词单列出来,然后从范围、内涵、外延,乃至文字等方面进行比较,存同求异,找出不同点。这样反差鲜明,容易记忆。
4.纲要记忆法。
生物学中有很多重要的、复杂的内容不容易记忆。可将这些知识的核心内容或关键词语提炼出来,作为知识的纲要,抓住了纲要则有利于知识的记忆。
5.衍射记忆法。
以某一重要的知识点为核心,通过思维的发散过程,把与之有关的其他知识尽可能多地建立起联系。这种方法多用于章节知识的总结或复*,也可用于将分散在各章节中的相关知识联系在一起。
生长素的发现:
1、胚芽鞘 尖端产生生长素,在胚芽鞘的基部起作用;
2、感光部位是胚芽鞘尖端;
3、琼脂块有吸收、运输生长素的作用;
4、生长素的成分是吲哚乙酸;
5、向光性的原因:由于生长素分布不均匀造成的,单侧光照射后,胚芽鞘背光一侧的生长素含量多于向光一侧,因而引起两侧生长不均匀从而造成向光弯曲。
二、生长素的生理作用:
1、生长素是不直接参与细胞代谢而是给细胞传达一种调节代谢的信息;
2、作用:
a、促进细胞的生长;(伸长)
b、促进果实的发育(培养无籽番茄);
c、促进扦插的枝条生根;
d、防止果实和叶片的脱落;
1. 人的成熟红细胞的特殊性:
①成熟的红细胞中无细胞核;
②成熟的红细胞中无线粒体、核糖体等细胞器结构;
③红细胞吸收葡萄糖的方式为协助扩散;
④葡萄糖在成熟的红细胞中通过糖酵解获得能量(两条途径:糖直接酵解途径EMP和磷酸己糖旁路途径HMP)。
2. 蛙的红细胞增殖方式为无丝分裂。
3. 乳酸菌是细菌,全称叫乳酸杆菌。
4.XY是同源染色体,但其大小不一样(Y染色体短小得多),所携带的基因不完全相同(Y染色体上基因少得多)。
5. 酵母菌是菌,但为真菌类,属于真核生物。
6.一般的生化反应都需要酶的催化,可水的光解不需要酶,只是利用光能进行光解,这就是证明“并不是生物体内所有的反应都需要酶”的例子。
7.人属于需氧型生物,人的体细胞主要是进行有氧呼吸的,但红细胞却进行无氧呼吸。
8.细胞分化一般不可逆,但是植物细胞很容易重新脱分化,然后再分化形成新的植株。
9. 高度分化的细胞一般不具备全能性,但卵细胞是个特例。
10. 细胞的分裂次数一般都很有限,但癌细胞又是一个特例。
11. 人体的酶发挥作用时,一般需要接*中性环境,但胃蛋白酶却需要酸性环境。
12. 矿质元素一般都是灰分元素,但N例外。
13. 双子叶植物的种子一般无胚乳,但蓖麻例外;单子叶植物的种子一般有胚乳,但兰科植物例外。
14. 植物一般都是自养型生物,但菟丝子、大花草、天麻等是典型的异养型植物。
15. 蜂类、蚁类中的雄性个体是由卵细胞单独发育而来的,只具有母方的遗传物质;雌性个体由**卵发育而来。
16. 一般营养物质被消化后,吸收主要是进入血液,但是甘油与脂肪酸则被主要被吸收进入淋巴液中。
17. 纤维素在人体中是不能消化的,但是它能促进肠的蠕动,有利于防止结肠癌,也是人体必需的营养物质了,所以也称为“第七营养物质”。
18. 酵母菌的呼吸方式为兼性厌氧型,有氧时进行有氧呼吸,无氧时进行无氧呼吸。
19. 高等植物无氧呼吸的产物一般是酒精,但是某些高等植物的某些器官的无氧呼吸产物为乳酸,如:马铃薯的块茎、甜菜的块根、玉米的胚等。
20. 化学元素“砷”是唯一可以使人致癌而不使其他动物致癌的致癌因子。
21. 体细胞的基因一般是成对存在的,但是,雄蜂和雄蚁就是孤雌生殖,只有卵细胞的染色体!
22. 体细胞的基因一般是成对存在的,植物中的香蕉是三倍体,进行无性生殖。
基因工程
1.基因工程的诞生
(1)基因工程:按照人们的意愿,进行严格的设计,并通过体外 DNA 重组和转基因等技术,从而创造出更符合人们需要的新的生物类型和生物产品。
(2)基因工程诞生的理论基础是在生物化学、分子生物学和微生物学科的'基础上发展起来,技术支持有基因转移载体的发现、工具酶的发现,DNA 合成和测序仪技术的发明等。
2..基因工程的原理及技术
(3)基因工程操作中用到了限制酶、DNA 连接酶、运载体
考点限制酶细化:
限制酶主要从原核生物生物中分离纯化出来,这种酶在原核生物中的作用是识别 DNA 分子的特定核苷酸序列,并且使每条链中特定部位的两个核苷酸之间的磷酸二酯键断开。
① 限制酶的特性是识别特定核苷酸序列,切割特定切点。限制酶产生的末端有两种:粘性末端和*末端。
② DNA 连接酶与 DNA 聚合酶的作用部位是磷酸二酯键,二者在作用上的区别为前者是恢复被限制性内切酶切开的两个核苷酸之间的磷酸二酯键,后者单个的核苷酸连接到DNA分子上。
③ 作为基因工程的载体应该具备标记基因、多个限制性内切酶切点、能够在宿主细胞内复制和稳定存等特点。
⑤ 常见的载体种类有质粒、动植物病毒、噬菌体
(4)基因工程四步骤:目的基因的获取、基因表达载体的构建、将目的基因导入受体细胞、目的基因的检测和表达。
考点细化:
① 目的基因的获取方法为根据基因的核苷酸序列、基因的功能、基因在载体上的位置、基因的转录产物、以及基因的表达产物蛋白质等特性来获取目的基因。
② 基因文库、基因组文库、cDNA 文库的区别:含有某种生物不同基因的许多DNA 片段,导入受体菌的群体中储存,各个受体菌体分别含有这种生物的不同基因,称之为基因文库。如果含有一种生物所有基因,叫做基因组文库。只包含一种生物的一部分基因,这种基因文库叫做部分基因文库,如cDNA 文库。
③ 基因重组操作中构建基因表达载体的目的是将目的基因在受体细胞中稳定存在,并且遗传给下一代,同时目的基因能够表达和发挥作用。
④ 一个完整的基因表达载体包括:目的基因、启动子、终止子、标记基因。
⑤ 将目的基因导入植物细胞、动物细胞和微生物细胞的常用方法分别是脓杆菌转化法、显微注射法、Ca2+处理法。
⑥ 基因工程的受体细胞选择,植物可以采用体细胞,动物不能用体细胞,一般采用**卵细胞。因为**卵具有全能性。
⑦ 当受体细胞是大肠杆菌时常用Ca2+处理细胞,这样做的目的是使细胞处于一种能够吸收周围环境中的DNA分子的感受态细胞。
⑧ 目的基因的检测:转基因生物的 DNA 是否插入了目的基因(DNA分子杂交技术);
目的基因是否转录出了 mRNA(分子杂交技术);
目的基因是否翻译成蛋白质(抗原-抗体杂交);
个体生物学水*鉴定(直接观察和检测性状)。
1.人的成熟红细胞的特殊性:
①成熟的红细胞中无细胞核;
②成熟的红细胞中无线粒体、核糖体等细胞器结构;
③红细胞吸收葡萄糖的方式为协助扩散;
④葡萄糖在成熟的红细胞中通过糖酵解获得能量(两条途径:糖直接酵解途径EMP和磷酸己糖旁路途径HMP)。
2.蛙的红细胞增殖方式为无丝分裂。
3.乳酸菌是细菌,全称叫乳酸杆菌。
4.XY是同源染色体,但其大小不一样(Y染色体短小得多),所携带的基因不完全相同(Y染色体上基因少得多)。
5.酵母菌是菌,但为真菌类,属于真核生物。
6.一般的生化反应都需要酶的催化,可水的光解不需要酶,只是利用光能进行光解,这就是证明“并不是生物体内所有的反应都需要酶”的例子。
7.人属于需氧型生物,人的体细胞主要是进行有氧呼吸的,但红细胞却进行无氧呼吸。
8.细胞分化一般不可逆,但是植物细胞很容易重新脱分化,然后再分化形成新的植株。
9.高度分化的细胞一般不具备全能性,但卵细胞是个特例。
10.细胞的分裂次数一般都很有限,但癌细胞又是一个特例。
11.人体的酶发挥作用时,一般需要接*中性环境,但胃蛋白酶却需要酸性环境。
12.矿质元素一般都是灰分元素,但N例外。
13.双子叶植物的种子一般无胚乳,但蓖麻例外;单子叶植物的种子一般有胚乳,但兰科植物例外。
14.植物一般都是自养型生物,但菟丝子、大花草、天麻等是典型的异养型植物。
15.蜂类、蚁类中的雄性个体是由卵细胞单独发育而来的,只具有母方的遗传物质;雌性个体由**卵发育而来。
16.一般营养物质被消化后,吸收主要是进入血液,但是甘油与脂肪酸则被主要被吸收进入淋巴液中。
17.纤维素在人体中是不能消化的,但是它能促进肠的蠕动,有利于防止结肠癌,也是人体必需的营养物质了,所以也称为“第七营养物质”。
18.酵母菌的呼吸方式为兼性厌氧型,有氧时进行有氧呼吸,无氧时进行无氧呼吸。
19.高等植物无氧呼吸的产物一般是酒精,但是某些高等植物的某些器官的无氧呼吸产物为乳酸,如:马铃薯的块茎、甜菜的块根、玉米的胚等。
20.化学元素“砷”是可以使人致癌而不使其他动物致癌的致癌因子。
21.体细胞的基因一般是成对存在的,但是,雄蜂和雄蚁就是孤雌生殖,只有卵细胞的染色体!
22.体细胞的基因一般是成对存在的,植物中的香蕉是三倍体,进行无性生殖。
23.红螺菌的代谢类型为兼性营养厌氧型。
24.猪笼草的代谢类型为兼性营养需氧型。
25.病毒是DNA或RNA病毒,但是朊病毒没有DNA或RNA,其遗传物质只是蛋白质(“朊”意即是蛋白质)。
名词:1、染色质:在细胞核中分布着一些容易被碱性染料染成深色的物质,这些物质是由DNA和蛋白质组成的。在细胞分裂间期,这些物质成为细长的丝,交织成网状,这些丝状物质就是染色质。
2、染色体:在细胞分裂期,细胞核内长丝状的染色质高度螺旋化,缩短变粗,就形成了光学显微镜下可以看见的染色体。
3、姐妹染色单体:染色体在细胞有丝分裂(包括减数分裂)的间期进行自我复制,形成由一个着丝点连接着的两条完全相同的染色单体。(若着丝点分裂,则就各自成为一条染色体了)。每条姐妹染色单体含1个DNA,每个DNA一般含有2条脱氧核苷酸链。
4、有丝分裂:大多数植物和动物的体细胞,以有丝分裂的方式增加数目。有丝分裂是细胞分裂的主要方式。亲代细胞的染色体复制一次,细胞分裂两次。
5、细胞周期:连续分裂的细胞,从一次分裂完成时开始,到下一次分裂完成时为止,这是一个细胞周期。一个细胞周期包括两个阶段:分裂间期和分裂期。分裂间期:从细胞在一次分裂结束之后到下一次分裂之前,叫分裂间期。分裂期:在分裂间期结束之后,就进入分裂期。分裂间期的时间比分裂期长。
6、纺锤体:是在有丝分裂中期细胞质中出现的结构,它和染色体的运动有密切关系。
7、赤道板:细胞有丝分裂中期,染色体的着丝粒准确地排列在纺锤体的赤道*面上,因此叫做赤道板。
8、无丝分裂:分裂过程中没有出现纺锤体和染色体的变化。例如,蛙的红细胞。
公式:1)染色体的数目=着丝点的数目。
2)DNA数目的计算分两种情况:①当染色体不含姐妹染色单体时,一个染色体上只含有一个DNA分子;②当染色体含有姐妹染色单体时,一个染色体上含有两个DNA分子。
语句:1、染色质、染色体和染色单体的关系:第一,染色质和染色体是细胞中同一种物质在不同时期细胞中的两种不同形态。第二,染色单体是染色体经过复制(染色体数量并没有增加)后仍连接在同一个着点的两个子染色体(姐妹染色单体);当着丝点分裂后,两染色单体就成为独立的染色体(姐妹染色体)。
2、染色体数、染色单体数和DNA分子数的关系和变化规律:细胞中染色体的数目是以染色体着丝点的数目来确定的,无论一个着丝点上是否含有染色单体。在一般情况下,一个染色体上含有一个DNA分子,但当染色体(染色质)复制后且两染色单体仍连在同一着丝点上时,每个染色体上则含有两个DNA分子。
3、植物细胞有丝分裂过程:(1)分裂间期:完成DNA分子的复制和有关蛋白质的合成。结果:每个染色体都形成两个姐妹染色单体,呈染色质形态。(2)细胞分裂期:A、分裂前期:①出现染色体、出现纺锤体②核膜、核仁消失;记忆口诀:膜仁消失两体现(说明是染色体出现和纺锤体形成)B、分裂中期:①所有染色体的着丝点都排列在赤道板上②在分裂中期染色体的形态和数目最清晰,观察染色体形态数目的时期;记忆口诀:着丝点在赤道板。C、分裂后期:①着丝点一分为二,姐妹染色单体分开,成为两条子染色体,并分别向两极移动②染色单体消失,染色体数目加倍;记忆口诀:着丝点裂体*分。D、分裂末期:①染色体变成染色质,纺锤体消失②核膜、核仁重现③在赤道板位置出现细胞板。记忆口诀:膜仁重现新壁成。
4、动、植物细胞有丝分裂的异同:①相同点是染色体的行为特征相同,染色体复制后*均分配到两个子细胞中去。②区别:前期(纺锤体的形成方式不同):植物细胞由细胞两极发出纺锤丝形成纺锤体;动物细胞由细胞的两组中心粒发出星射线形成纺锤体。末期(细胞质的分裂方式不同):植物细胞在赤道板位置出现细胞板形成细胞壁将细胞质分裂为二;动物细胞:细胞膜从中部向内凹陷将细胞质缢裂为二。
5、DNA分子数目的加倍在间期,数目的.恢复在末期;染色体数目的加倍在后期,数目的恢复在末期;染色单体的产生在间期,出现在前期,消失在后期。
6、有丝分裂中染色体、DNA分子数各期的变化:①染色体(后期暂时加倍):间期2N,前期2N,中期2N,后期4N,末期2N;②染色单体(染色体复制后,着丝点分裂前才有):间期0-4N,前期4N,中期4N,后期0,末期0。③DNA数目(染色体复制后加倍,分裂后恢复):间期2a-4a,前期4a,中期4a,后期4a,末期2a;④同源染色体(对)(后期暂时加倍):间期N前期N中期N后期2N末期N。
7、细胞以分裂方式进行增殖,细胞增殖是生物体生长、发育、繁殖和遗传的基础。细胞有丝分裂的重要意义(特征),是将亲代细胞的染色体经过复制以后,精确地*均分配到两个子细胞中去,因而在生物的亲代和子代间保持了遗传性状的稳定性,对生物的遗传具重要意义。
名词:1、植物的矿质营养:是指植物对矿质元素的吸收、运输和利用。
2、矿质元素:一般指除了C、H、O以外,主要由根系从土壤中吸收的元素。植物必需的矿质元素有13种.其中大量元素7种N、S、P、Ca、Mg、K(Mg是合成叶绿素所必需的一种矿质元素)巧记:丹留人盖美家。Fe、Mn、B、Zn、Cu、Mo、Cl属于微量元素,巧记:铁门碰醒铜母(驴)。
3、交换吸附:根部细胞表面吸附的阳离子、阴离子与土壤溶液中阳离子、阴离子发生交换的过程就叫交换吸附。
4、选择吸收:指植物对外界环境中各种离子的吸收所具有的选择性。它表现为植物吸收的离子与溶液中的离子数量不成比例。
5、合理施肥:根据植物的需肥规律,适时地施肥,适量地施肥。
生物的遗传和变异
• 遗传:是指亲子间的相似性。
• 变异:是指子代和亲代个体间的差异。
一、基因控制生物的性状
1. 生物的性状:生物的形态结构特征、生理特征、行为方式.
2. 相对性状:同一种生物同一性状的不同表现形式。
3. 基因控制生物的性状。例:转基因超级鼠和小鼠。
4. 生物遗传下来的是基因而不是性状。
二、基因在亲子代间的传递
1.基因:是染色体上具有控制生物性状的DNA 片段。
2.DNA:是主要的遗传物质,呈双螺旋结构。
3.染色体 :细胞核内能被碱性染料染成深色的物质。
4.基因经**或卵细胞传递。**和卵细胞是基因在亲子间传递的“桥梁”。
• 每一种生物细胞内的染色体的形态和数目都是一定的。
• 在生物的体细胞中染色体是成对存在的,基因也是成对存在的,分别位于成对的染色体上。
• 在形成**或卵细胞的'细胞分裂中,染色体都要减少一半。
三、基因的显性和隐性
1. 相对性状有显性性状和隐性性状。杂交一代中表现的是显性性状。
2. 隐性性状基因组成为:dd。显性性状基因组称为:DD或 Dd
3. 我国婚姻法规定:直系血亲和三代以内的旁系血亲之间禁止结婚.
4. 如果一个家族中曾经有过某种遗传病,或是携带有致病基因,其后代携带该致病基因的可能性就大.如果有血缘关系的后代之间再婚配生育,这种病的机会就会增加.
一、传染病
1、引起传染病的病原体有:细菌、病毒、寄生虫等
传染病具有传染性、流行性
2、传染病流行的三个基本环节
(1)传染源 指能够散播病原体的人或动物;
(2)传播途径 如空气传播、饮食传播、生物媒介传播、接触传播等;
(3)易感人群 指对某种传染病缺乏免疫力而容易感染该病的人群。
二、免疫
1.人体的三道防线:
2.抗体:病原体侵入人体后,刺激淋巴细胞产生的一种抵抗该病原体的特殊蛋白质。
3.抗原:引起人体产生抗体的物质(如病原体等)
4.特异性免疫与非特异性免疫
非特异性免疫(先天性免疫):生来就有的,对多种病原体发挥作用,如人体第一、二道防线 特异性免疫(后天性免疫):生活中逐渐建立的,针对某种特定病原体发挥作用,如人体第三道防线
5.免疫的功能:识别、监视、自我稳定
三、安全用药常识
(1)安全用药是指根据病情需要,在选择药物的品种、剂量和服用时间等方面都恰到好处,充分发挥药物的最佳效果,尽量避免药物对人体所产生的不良反应或危害。
(2)药物可以分为处方药和非处方药。非处方药简称为OTC,适于消费者容易自我诊断、自我治疗的小伤小病。
(3)使用任何药物之前,都应该仔细阅读使用说明,了解药物的主要成分、适应症、用法和用量、药品规格、注意事项、生产日期和有效期等,以确保用药安全。
1)多倍体育种的原理、方法及特点
方法:人工诱导多倍体的方法有很多,如低温处理等。目前最常用而且最有效的方法,是用秋水仙素来处理萌发的种子或幼苗。
原理:当秋水仙素作用于正在分裂的细胞时,能够抑制纺锤体的形成,导致染色体不能移向细胞两极,从而引起细胞内染色体数目加倍。染色体数目加倍的细胞继续进行有丝分裂,将来就可能发育成多倍体植株。
特点:获得多倍体,培育新品种(例如:含糖量高的甜菜和三倍体无子西瓜)。
2)诱变育种在生产中的应用
利用物理因素(如X射线、γ射线、紫外线、激光等)或化学因素(如亚硝酸、硫酸二乙酯等)来处理生物,使生物发生基因突变。例如:青霉菌的选育。
3)单倍体育种的原理、方法及特点
原理:体细胞中含有本物种配子(例如:**、卵细胞)染色体数目的个体,叫做单倍体。
方法:采用花药(花粉)离体培养的方法来获得单倍体植株。
特点:利用单倍体植株培育新品种能明显缩短育种年限。
育种工作者常常采用花药(花粉)离体培养的方法来获得单倍体植株,然后经过人工诱导使染色体数目加倍,重新恢复到正常植株的染色体数目。用这种方法培育得到的植株,不仅能够正常生殖,而且每对染色体上的成对的基因都是纯合的,自交产生的后代不会发生性状分离。
转基因生物和转基因食品的安全性
一种观点:转基因生物和转基因食品不安全,要严格控制。
另一种观点:转基因生物和转基因食品是安全的,应该大范围推广(P105)
人类遗传病
1)人类遗传病的产生原因、特点及类型
原因:人类遗传病通常是指由于遗传物质改变而引起的人类疾病,主要可以分为单基因遗传病、多基因遗传病和染色体异常遗传病。
特点及类型:
单基因遗传病:受一对等位基因控制的遗传疾病。
多基因遗传病:受两对以上等位基因控制的人类遗传病,主要包括一些先天性发育异常和一些常见病,如原发性高血压、冠心病、哮喘病和青少年型糖尿病,在群体中发病率比较高。
染色体异常遗传病:由染色体异常引起的遗传病。如21三体综合征。
2)常见单基因病的遗传
可能由显性致病基因引起:如多指,并指,软骨发育不全,抗维生素D佝偻病;
也可能有隐性致病基因引起:如,镰刀型细胞贫血症、白化病、先天性聋哑、苯丙酮尿症。
人类遗传病的监测和预防
通过遗传咨询和产前诊断等手段,对遗传病进行检测和预防,在一定程度上能够有效的预防遗传病的产生和发展。
1)遗传病的产前诊断与优生的关系
产前诊断是在胎儿出生前确定胎儿是否患有某种遗传病或先天性疾病。
2)遗传咨询与优生的关系
遗传咨询的内容是向咨询对象提出防治对策和建议。
人类基因组计划及其意义
人类基因组计划正式启动于1990年,目的是测定人类基因组的全部DNA序列,解读其中包含的遗传信息。*是参与了这一项计划的唯一发展*家,承担了其中1%的测序任务。测序结果表明人类基因组大约由31.6亿个碱基对组成。
意义:P93资料搜集和分析正面效应及负面效应相关内容。
现代生物进化理论的主要内容
一、种群基因频率的改变与生物进化
在自然选择的作用下,种群的基因频率会发生定向改变,导致生物朝着一定的方向不断进化。
1.种群是生物进化的基本单位
2.突变和基因重组产生进化的原材料
3.自然选择决定生物进化的方向
二、隔离与物种形成 生殖隔离、地理隔离 生物进化与生物多样性的形成
地球上原始大气中是没有氧气的,因此,最早出现的生物都是厌氧(进行无氧呼吸)的;最早的光合生物的出现,使得原始大气中有了氧气,这就为好氧生物的出现创造了前提条件。
生物进化与生物多样性的关系 生物多样性主要包括:基因多样性、物种多样性和生态系统多样性。 生物多样性的形成经历了漫长的进化历程。
一、传统发酵技术
1.果酒制作:
1)原理:酵母菌的无氧呼吸反应式:C6H12O62C2H5OH+2CO2+能量。
2)菌种来源:附着在葡萄皮上的野生酵母菌或人工培养的酵母菌。
3)条件:18-25℃,密封,每隔一段时间放气(CO2)
4)检测:在酸性条件下,重*钾与酒精反应呈灰绿色。
2、果醋制作:
1)原理:醋酸菌的有氧呼吸。
O2,糖源充足时,将糖分解成醋酸
高三生物知识点归纳
高三生物知识点
高三生物复*知识点
必修三生物知识点总结
高一生物知识点归纳
高二生物重要知识点总结归纳
生物知识点归纳
高三物理知识点归纳
高一生物必修一知识点归纳
生物知识点归纳总结
高二生物知识点
高考生物知识点归纳
生物选修一知识点归纳
高二生物必修三知识点总结
高二生物必修三知识点分享
高三生物总结
高一生物知识点
高二生物会考知识点
高二生物知识点总结
初二生物上册知识点
初二生物下册知识点
初一生物知识点
高三生物教学反思
高三生物教学总结
高一生物知识点总结
初一生物上册知识点
高中生物知识点归纳
语文知识点归纳
高一生物必修一知识点
高三生物调研活动总结