关于《3的倍数的特征》教学设计的文字专题页,提供各类与《3的倍数的特征》教学设计相关的句子数据。我们整理了与《3的倍数的特征》教学设计相关的大量文字资料,以各种维度呈现供您参考。如果《3的倍数的特征》教学设计未能满足您的需求,请善用搜索找到更适合的句子语录。
2、5倍数的特征教学设计
作为一名为他人授业解惑的教育工作者,通常需要准备好一份教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。写教学设计需要注意哪些格式呢?下面是小编为大家收集的2、5倍数的特征教学设计,欢迎阅读,希望大家能够喜欢。
知识目标:
1、在解决具体问题的过程中,探索2、5倍数的特征,能找出100以内的2,5的倍数,能迅速判断一个数是否是2、5的倍数。
2、初步理解奇数、偶数的概念。
能力目标:
1、经历探究2,5倍数的特征的过程,能举出生活中的数,再判断是奇数还是偶数。
3、在探索活动中,发现观察、分析和归纳概括能力,培养类推能力及主动获取知识的能力。
情感目标:通过探索活动,感受数学思考过程的条理性,发展初步的归纳、推理能力,激发探索规律的兴趣。
教学重点:掌握2、5的倍数的特征及奇数、偶数的概念。
教学难点:1、掌握既是2的倍数,又是5的倍数的特征。
2、利用所学知识解决生活中的数学问题。
教学方法:引导探究法、练*法、讨论法、讲解法
教学过程
(一)情境导入
每年的六一啊,都是大家最开心的时候了,有许多的活动可以参加。看,这是某小学准备在六一表演的集体舞节目,从这些信息中,你能提出哪些数学问题?
预设:跳交谊舞的一共有多少人?圆圈舞和叠罗汉的一共有多少人参加。
师:那么跳交谊舞的选多少人参加合适呢?你大胆猜一猜。
学生猜测数据,教师板书。并启发学生:能不能把所有适合交谊舞表演的人数用一句话概括呢?
预设:“参加交谊舞表演的人数应该是2的倍数。”接着再让学生说一说圆圈舞的人数应该是多少人?用一句话概括一下,板书5的倍数。
观察,2的倍数,5的倍数,它们都有什么特征?是不是所有的2的倍数都有这样的特征呢?这节课我们就来研究2,5的`倍数特征。
(二)探究学*
1、探究2的倍数
教师:下面我们来研究一下2的倍数特征,老师为大家提供了一张百数表,你可以在百数表上把2的倍数圈出来。如果有的同学想挑战一下自己,可以在本上列举一些百数表上没有的2的倍数,然后看看这些数是不是具有这样的特征。一会我们来交流,好吗?
2、交流:说明要求,先说你是用什么方法找到2的倍数的,再说说2的倍数由什么特征。
预设:我用百数表来找到了2的倍数,我发现……
师:谁也是用百数表来找的举手?说说你们的发现。
预设:都是双数
师:是双数吗?是一个个算的,还是一眼就看出来的。
能说说是怎么一眼看出来的吗?
预设2:个位上是0,2,4,6,8。
师:同意他的说法吗?那2的倍数跟十位没有关系吗?(没有,因为十位上可以是1~9
刚才谁是在本上举例的?来交流验证一下。三位数,四位数,五位数,六位数,都符合这个特征码?
师:通过刚才的广泛验证,我们发现,无论是几位数,只要个位上的数是0,2,4,6,8的数,就都是2的倍数
像这些2的倍数都是偶数,不是2的倍数的数就是奇数。
3、探究5的倍数
刚才同学们表现非常出色,借助百数表和列举法自主探究出了2的倍数特征。那么有没有信心用刚才的方法独立探究一下5的倍数有什么特征?
师:找到5的倍数特征了吗?把你的想法在小组交流一下。
预设:我用列举法找到
预设:我在百数表上找的。
大家同意他的看法吗?是不是所有的5的倍数个位上都是0或5呢?能举个多位数的例子来验证一下吗?再来个反例。
通过举例验证,我们得出了5的倍数特征:(板书:个位上是0,,5
3、对比观察
比较一下2和5的倍数特征有哪些共同点?
预设1:都要看个位
预设2:个位上是0的数是2的倍数,也是5的倍数
教师总结:大家自己归纳的结论,在实际应用中肯定会得心应手的。
(三)分层练*
1、初显身手
找2,5的倍数
说一说你是怎么找的。
一、课前准备
1.上节课我们认识了倍数,那么什么是倍数?请举例说明。
2.你对倍数还有什么认识?
一个数的最小倍数是它本身,一个数的倍数的个数是无限的,没有最大的倍数。
二、创设情境
师生进行猜数游戏,学生说出一个自然数,教师马上判断是否是2、5的倍数。由此引入学*的需求。
师:同学们,今天老师和你们一起玩个猜数游戏,好吗?你们任意说出一个自然数,不管是几位数,我都能很快的判断出它是否是2或5的倍数。不信可以试试看。
学生报数,老师答,同时请大家验证。
三、学生尝试
教师说数,学生判断。
师:你们想知道老师为什么不计算就能马上判断出来吗?老师告诉你们,学了今天的知识,你们就知道老师猜数的奥秘了。
四、自主探索
1.出示1~100的自然数表,提出找2、5倍数的要求,让学生用自己的方法找出5的倍数、2的倍数。
师:请同学们打开书86页,看一看在1~100的自然数中,找出5的所有倍数,用红笔圈出来;再找出2的所有倍数,用蓝笔圈出来。
学生在1~100自然数表中用自己的方法找2、5的倍数,教师巡视指导。
2.全班交流,先说一说是怎样找的,再说2的倍数有哪些数,5的倍数有哪些数。要给学生充分表达的机会。
师:谁来说一说你是怎样找的?2和5的倍数分别有哪些?
生1:我先利用乘法口诀找,一二得二,……,我发现偶数都是2的倍数。
生2:利用除法找,分别除以2或5,若没有余数就是它们的倍数。
生3:上节课找出了2、5的倍数,直接圈出来。
生4:5的倍数好找,除了5,几十5就是整十数。
3.提出“议一议”的问题,引导学生观察、讨论5的倍数、2的倍数分别有什么特征。要给学生充分的讨论、交流时间。
师:请同学们仔细观察,5的倍数,有什么特征?
生:5的倍数个位上不是5就是0。
生:5的倍数,个位上的数是0或5。
师:2的倍数又有什么特征?
生:2的倍数,个位上的数是0、2、4、6、8。
生:2的倍数都是偶数……
教师予以肯定并随机指出2的倍数都是偶数,不是2的倍数的就是奇数。
4.在充分交流的基础上,总结出5的倍数的特征,2的倍数的特征。
师:根据刚才大家的发现,谁能总结一下,5的倍数有什么特征?2的倍数有什么特征?
学生可能会说:
●个位上是0、2、4、6、8的数都是2的倍数;
●个位上是0或5的数都是5的倍数。
5.师生再次进行猜数游戏,教师说数,让学生判断是2的倍数还是5的倍数。
师:现在,你们知道老师猜数的奥秘了吗?
师:现在老师说数,请同学们判断出它是不是5或2的倍数?
教师随机说数,学生判断。关注学*有困难的同学。
教学目标:
1、经历探索2、5的倍数特征的过程,理解2,5的倍数特征。能判断一个数是否为2或5的倍数
2、了解奇、偶数的含义,能判断一个非零自然数是奇数或偶数
3、在观察、猜测和讨论过程中,发展探求问题和解决问题的能力
重点难点:
重点:掌握是2、5倍数的数特征及奇数、偶数的概念。
难点:灵活运用是2、5倍数的数的特征及奇数、偶数的概念进行综合判断。
课 型:新授课(概念教学)
教学时数:1课时
教学准备:
教具:百数表
学具:数字卡片
教学过程:一、游戏导入,揭示目标
教学目标:
知识与技能
1、学生经历2、5倍数的特征的探索过程,掌握2、5倍数的特征,会正确判断一个数是不是2、5的倍数。
2、在观察、猜想、验证和讨论的过程中,提高探究问题和合作学*的能力。
过程与方法
在合作学*中培养学生观察、分析、判断的能力,使学生逐渐形成合作意识和初步的探索精神。
情感、态度和价值观
培养学生学**惯的养成,培养学生自主学*的策略,养成良好品质。
教学重点:归纳、概括2和5的倍数的特征。
教学难点:运用2和5的倍数的特征解决问题。
教学过程:
一、游戏引入
1、数学王国里的5部落和2部落要召回散落在外的人马了,召回条件:5部落只召回5的倍数,2部落只找回2的倍数。
2、师生比赛找5的倍数和2的倍数。
3、老师之所以获胜,是因为运用了“2、5的倍数的特征”(板书课题),看到课题,你有什么问题要问吗?
同学们有这么多的问题,下面我们就带着这些问题开启今天的探索之旅,一起探究2、5的倍数的特征。
二、自主探究
1、拿出尝试研究单,完成第一题。
读要求,自主找到1—100中2的所有倍数和5的所有倍数。
2、汇报找倍数的方法和结果。
三、小组讨论交流
1、仔细观察5的倍数和2的倍数,看看你有什么发现?把你的想法和小组同学进行交流,共同完成尝试研究单的第二题。
2、小组讨论。
四、汇报交流
1、汇报5的倍数特征。
(1)哪个小组来汇报5的倍数有什么特征?
(2)谁能举个更大一些的数来进行验证?
(3)小结:5的倍数的特征是:个位上是5或0。
2、汇报2的倍数的特征。
(1)哪个小组来汇报2的倍数有什么特征?
(2)谁能举个更大一些的数来进行验证?
(3)小结:2的倍数的特征是:个位上是2、4、6、8、0。
3、汇报既是2的倍数又是5的倍数的特征。
(1)观察最后一列,你有什么发现?
(2)一个数既是2的倍数,又是5的倍数,有什么特征?
五、教师点拨
我们通过观察、比较、猜想、验证知道了5的倍数的特征和2的倍数的特征,以后我们再来判断一个数是不是5的倍数和2的倍数可以只看个位就行了。
六、挑战自我
1、将下面的数填写在合适的圈里。
18、24、30、31、45、56、60、72、75、80、95、100
2、一本30页的画册,翻开后看到两个页码,其中有一个既是2的倍数,又是5的倍数。想一想:看到的可能是哪两页?
3、学校举办集体舞比赛,分“双人舞”和“五人舞”两个项目。看下面几个班的学生人数,你认为各班表演哪种舞蹈比较合适?为什么?
七、总结收获
这节课你有什么收获?
八、板书设计2和5的倍数的特征教学设计篇三教学目标:
1、让学生经历2和5的倍数特征的探索过程,理解并掌握2和5的倍数的特征,会运用这些特征判断一个数是不是2和5的倍数;知道偶数和奇数的意义,会判断一个自然数是偶数还是奇数。
2、在学*活动中培养学生的观察、分析、比较、概括能力和合情推理能力,增强学生的探索意识,进一步感受数学的奇妙。
目标预设:
1.让学生经历探索2、5倍数特征的过程,理解2、5倍数的特征,能熟练判断一个数是不是2或5的倍数。
2. 知道奇数与偶数的含义,能熟练判断一个数是奇数或偶数。
3.在观察、猜测过程中提高探究问题的能力。
1、在探究5的倍数特征时感受“猜想”与“结论”的不同。
在教学中,当学生找到百数表内5的倍数特征时,我追问学生,“是不是在所有的自然数中,5的倍数都有这个特征呢?”学生异口同声地都认为是。这里就需要教师帮助学生养成严谨科学的学*态度。我告诉学生是不是有这个特征,我们没有研究过,只是我们的猜想。还需要我们进一步去验证。大部分学生还是比较认可的。没有经过研究,怎么能知道是呢?有了这样的猜想,最后通过举例的方法验证后,学生没有找到反例,这时我才告诉学生,一开始的猜想现在变成了结论。虽然同样是一句话,不同的时候有不同的界定,没有经过验证前,只是猜想;只有验证后,猜想才可能变成结论。相信学生不断经历这种过程后,他们才会具备科学的态度,才会学会对自己所说的话负责,才不会贸然下结论。
2、经历完整的研究过程,渗透数学方法的培养和感悟。
这节课中,当学生研究出5的倍数的特征后,我引导学生来回忆。我们是怎样来研究5的倍数的特征的?让学生体验经历“找数——观察——猜想——百数表中验证——更大数验证——结论”这一研究过程,然后让学生独立去研究2的倍数的特征,再次体验2的倍数的特征研究过程,我想学生就有了更完整的体验。
整节课学生经历了“观察,动手,发现规律、验证规律、得出结论,运用规律”的过程。著名数学家波利亚说过:“学*任何知识的最佳途径是由学生自己去发现。因为这种发现,理解最深刻,也最容易掌握其中的内在规律联系。”离开了学生的学*活动,学生的发展将是空中楼阁。通过活动落实教学任务,让学生用自己的思维方式去探究,自己去体验,能有效促进学生主体的发展。学生经历和感悟“观察,动手实践,发现规律、验证规律、得出结论”的学*过程比学到的数学知识更有价值。如果教学中能长期坚持运用这些学*方法,而且学生一旦形成自己自主的学*方式,那将是非常可贵的。
总设计意图:
1、2和5倍数的特征,都在个位数,学生极易理解和掌握,奇数、偶数的概念,学生掌握也并不困难,所以这部分内容的学*从学生已有的知识经验出发,创设有助于学生自主学*、合作交流的情境,使学生经历观察、操作、归纳、类比、猜想、交流、反思等数学活动,获得基本的数学知识和技能,发展思维能力,激发学*的兴趣,增强学好数学的信心。出现疑难问题或意见不一时,通过小组或集体讨论解决,教师发挥引导的作用,消除学生的疑惑;关注学生的个体差异,使不同层次的学生在练*中获得不同的发展,体验成功的喜悦。
2、学*方法的指导非常必要,让学生感受数学是一门严谨的学科,数学研究的方法就在*时的学*中,并不神秘,为学生以后的数学研究打下良好的基础。
在执教《2、5、3的倍数的特征》后,我针对本节课的教学情况进行反思。
一、跨年级学*新数学知识,知识衔接不上,不符合学生的认知规律。
虽然2、5、3的倍数的特征看起来很简单,探究的过程可能没有什么困难之处,但要内容让学生学懂,首先存在知识衔接问题,整除、倍数、因数这些概念学生都从未接触过,因此,我在课开始安排了整除、倍数、因数新概念的介绍,在我看来,这些概念比较抽象,学生一时难以掌握。
二、为了体现“容量大”,教学延堂。
备课时也参考了不少资料,大多数教学设计都是将这一内容分成两节课来学*,一节学《2、5的倍数的特征》,一节学《3的倍数的特征》,我确定用一节课教学《2、5、3的倍数的特征》,其目的是为了体现容量大,我的设计内容多,相应的学生自学、展示、巩固练*的时间和机会就压缩的比较少了。而3的倍数的特征与2、5的又完全不同,学生接受起来可能会有一定的难度,最好单独作为一课时学*。最后的环节达标测试拖堂了。
三、学生合作学*的效果较好,但展示未体现立体式。
高效课堂要充分发挥学生的.主体作用,要体现学生会学,学会,在本节课上,学生合作学*的热情高,通过展示,发现学生学懂了,总结出了2、5、3的倍数的特征,在展示环节,学生讲的、板书的相互干扰,于是,我临时安排按先后顺序进行,没体现出高效课堂的“立体式”这一特点。
本课时是在学生学*了因数、倍数的基础上,进一步来探索2、5的倍数的特征,并体会运用特征解题的优越性,明白优化知识的便捷性。
1、联系生活,培养学生学*数学的兴趣。
在教学中,教师努力拉*数学与生活的联系。首先利用六一儿童节学生表演三种集体舞这一教学资源,创设了问题情境,在学生提出问题之后,又让学生利用百数表这一学具自主探究2、5倍数的特征,把数学和生活有机联系起来,使学生体会到数学在现实生活中的作用和价值,初步学会用数学的眼光去观察事物、思考问题,解决问题。
2、、鼓励学生独立思考,经历猜测验证的过程。
数学学*过程中充满了观察、实验、推断等探索性与挑战性活动。由于5的倍数的特征比较容易发现,我便把它调到2的倍数的特征前面来进行教学。首先让学生独立写出100以内5的倍数,独立观察,看看你有什么发现?学生很容易发现个位上是0或5的数是5的倍数。而这只是猜测,结论还需要进一步的验证。我们不能满足于学生能够得到结论就够了,而应该抱着科学严谨的态度,引导学生认识到这个结论仅仅适用于1100这个小范围。是不是在所有不等于0的自然数中都适用呢?还需要研究。在老师的引导下,学生开始认识到还要继续拓展范围,研究大于100的自然数中所有5的倍数是不是也是个位上的数字是5或0。在这一过程中,学生感受到了科学严谨的态度,知道了在进行一项数目巨大的研究过程中,可以从小范围入手,得到一定的猜想,然后逐渐扩范围大,最后得出科学的结论。这样,当下节课研究3的倍数的特征时,学生就会大胆猜想,并有方法来验证自己的猜想了。
3、精心选题,发挥*题的探索性和趣味性。
*题的设计力争在突出重点,突破难点,遵循学生认知规律的基础上,体现趣味性、基础性、层次性、灵活性、生活性。本节课教师设计了5道练*题。在巩固练*部分,第(1)、(2)题是基本题;第(3)(4)题目的是让学生根据2、5倍数的特征灵活解决问题。第(5)题是让学生感知数学与生活的密切联系。
本节课的学*设计从学生已有的知识经验出发,创设有助于学生自主学*、合作交流的情境,使学生经历观察、归纳、类比、猜想、交流、验证、反思等数学活动,获得基本的数学知识和技能,发展思维能力,激发学*的兴趣,增强学好数学的信心。
正确的教学观念,恰当的教学设计,使课堂生动活泼,成效显著。主要体现了以下几个优点:
一、以人为本,尊重学生,真正把学生放到学*的主体地位中
“兴趣是学*的最好动力。”学生始终保持着昂扬的学*兴趣和斗志。教师也真正做到了以人为本,尊重学生的个性发展。这就是本节课最大的成功。
二、细节讲究珠圆玉润、相得益彰
每个细节都能从整体上加以考虑,能做到衔接得体自然。例如:奇偶数组成整个自然数,在百数表中以及在辨别奇偶数以后都有提问并进行强化。又如:在学*既是2的倍数又是5的倍数这个环节,采用先找出2的倍数,再找5的倍数的方法,然后动态展示集合圈的交集既是2的倍数又是5的倍数,在不揭示“公倍数”这一概念的学*要求下,让学感知“公倍数”这一特点,为下一步学*打下良好的基础。
三、各个环节的处理详略得当、环环相扣
注重细节,但并不处处皆是面面俱到。各个环节处理既有详,又有略,环节之间还能够水到渠成,环环相扣,体现出知识之间的生成。每个环节不会显得突兀,给人一种浑然一起的感觉;每个环节之间又有相应的重点内容,显得比较紧凑,缺一不可。
本节课有以下不足之处:
一、课件用绿色代表偶数,偶数变绿色时,颜色太淡,后排看不清楚。
二、时间分配还有点欠妥,开始进入课题时间稍微长点,消耗学*时间。
三、教师语言还应该进一步简洁。
本节课的学*设计从学生已有的知识经验出发,创设有助于学生自主学*、合作交流的情境,使学生经历观察、归纳、类比、猜想、交流、验证、反思等数学活动,获得基本的数学知识和技能,发展思维能力,激发学*的兴趣,增强学好数学的信心。
正确的教学观念,恰当的教学设计,使课堂生动活泼,成效显著。主要体现了以下几个优点:
一、以人为本,尊重学生,真正把学生放到学*的主体地位中
“兴趣是学*的最好动力。”学生始终保持着昂扬的学*兴趣和斗志。教师也真正做到了以人为本,尊重学生的个性发展。这就是本节课最大的成功。
二、细节讲究珠圆玉润、相得益彰
每个细节都能从整体上加以考虑,能做到衔接得体自然。例如:奇偶数组成整个自然数,在百数表中以及在辨别奇偶数以后都有提问并进行强化。又如:在学*既是2的倍数又是5的倍数这个环节,采用先找出2的倍数,再找5的倍数的方法,然后动态展示集合圈的交集既是2的倍数又是5的倍数,在不揭示“公倍数”这一概念的学*要求下,让学感知“公倍数”这一特点,为下一步学*打下良好的基础。
三、各个环节的处理详略得当、环环相扣
注重细节,但并不处处皆是面面俱到。各个环节处理既有详,又有略,环节之间还能够水到渠成,环环相扣,体现出知识之间的生成。每个环节不会显得突兀,给人一种浑然一起的感觉;每个环节之间又有相应的重点内容,显得比较紧凑,缺一不可。
本节课有以下不足之处:
一、课件用绿色代表偶数,偶数变绿色时,颜色太淡,后排看不清楚。
二、时间分配还有点欠妥,开始进入课题时间稍微长点,消耗学*时间。
三、教师语言还应该进一步简洁。
教学内容:3的倍数的特征(P19及P20题4~5)
教学目标:
① 使学生通过操作自己发现3的倍数的特征,并归纳出3的倍数的特征。
② 能应用3的倍数的特征,会判断一个数是否是3的倍数。
③ 培养学生观察、分析、概括、推理能力。
④ 让学生在探索发现过程中体验到成功的乐趣,培养学*数学的信心。
教学重点:探求3的倍数的特征。
教学难点:会判断一个数是否是3的倍数。
教学过程:
一、课前预*:
自学内容 P19 做一做,P20的T4-11
1、判断下面哪些数是2的倍数,哪些数是5的倍数?
18,25,46,85,100,325,180,90
2、说一说2、5的倍数它们有什么特征呢?
3、既是2的倍数又是5的倍数的数有什么特征?
4、你们猜一猜3的倍数有什么特征呢?
尝试练*
1、试着完成P19的做一做练*
2、判断下列数哪些是3的倍数?
33 34 27 180
69 390 405 300
二、汇报展示:
同学们,你们只要随便说一个数,我就能很快说出它是不是3的倍数,你们相信不?
1、学生猜想:
(1)个位是3、6、9的数是3的倍数;
(2)个位是2、5的数是3的倍数;
(3)个位是1、2、3、5、6、8、9的数是3的倍数;
(4)个位是0-9的数是3的倍数
……
2.验证猜想。反馈3的倍数的特征。
(1)思考并回答
①什么样的数是3的倍数?
②要想研究3的倍数的特征,应该怎样做?
(2)学生反馈:(根据学生说的逐一板书,先找出一些3的倍数)
1×3=3 5×3=15
2×3=6 6×3=18
3×3=9 7×3=21
4×3=128×3=24
(3)观察:3的倍数的各位数字又什么特征?它是不是3的倍数?其它位数又什么特征?
(4)提问:如果老师讲这些3的倍数的各位数字和十位数字调换,它还是3的倍数吗?
我们发现:调换位置后还是3的倍数,那么3的倍数有什么奥妙呢?(分组讨论,汇报)
得出结论:如果把3的倍数的各位上的数字相加,他们的和是3的倍数。
验证:下面各数,哪些是3的倍数呢?
210,54,216,129,9231,9876543204
(5)小结:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
2.练*:完成P19做一做
三、反馈检测:
1完成P20题4~5
2(1)在□里填上适当的数,使它是3的倍数
3□5□1646□400□
(2)在□里填上适当的数,使它成为偶数,并且是3的倍数。
教学重点:掌握2、5倍数的特征及奇数、偶数的概念。
教学难点:灵活运用2、5倍数的特征进行综合判断。
教材分析:
本节课内容是在学生学*了因数、倍数概念的基础上进行教学的,它不仅是求最大公因数、最小公倍数的重要基础,也是以后学*约分和通分的必要前提。因此,熟练掌握2、5的倍数特征,对于本单元的学*具有十分重要的意义。
教学过程:
一、创设情境,引出课题
同学们,自从开展大课间活动以来,东关小学举办了多种活动(课件出示照片), “每天锻炼一小时,健康学*一整天”,这就是我们的切身体会。
(1)请你说一说图中有哪些数学信息?
生:跳交谊舞的2人一组,跳圆圈舞的5人一组,叠罗汉的3人一组。
(2)下周学校要举行比赛,如果让你选派人数,每项活动可以选派多少人?
得出:跳交谊舞的人数都是2的倍数。
跳圆圈舞的人数都是5的倍数。
叠罗汉的人数是3的倍数。(板书)
小结:看来,无论选什么项目,我们所选派的人都应该是2、5、3的倍数。今天我们研究的是2和5的倍数。(板书:2、5的倍数的特征)
二、合作探究:
(一)、探索5的倍数的特征
1、师:在自然数中,5的倍数有多少个?(无数个)我们不可能研究所有5的倍数,怎么办呢?那我们就先来研究100以内的5的倍数有什么特征吧!
2、出示百数表:
(1)、在百数表中用“△”圈出5的倍数。
(2)、观察5的倍数,你有什么发现?将你的发现在小组中交流。
(四人小组,在组内交流并讨论 。)
学生汇报:
板书:(5的倍数:个位上的数是5或0)
(3)师:你们都发现了5的倍数与个位有关,那么与十位有没有关系?
(4)举例验证。
(5)刚才我们研究的是100以内5的倍数的特征,那100以上5的倍数也有这样的特征吗?谁能报一个数我们来试一试。254是5的倍数吗?
过渡:100以内个位上是0或5的数就是5的倍数,100以上的数也是一样。
(6)现在你能对5的倍数的特征下一个结论吗?
过渡:知道5的倍数的特征你能快速判断一个数是不是5的倍数吗?
(7)、出示卡片: 271、375、240、2357 64300这是5的倍数吗?
(学生判断,说明理由。)
(二)、探索2的倍数特征
(1)猜一猜:2的倍数可能会有什么特征呢?
(2)请在你的百数表上,用“o”圈出2的倍数,找完后自己研究发现2的倍数有什么特征?然后小组交流,汇报。
(3)总结得出:2的倍数的个位是0,2,4,6,8。
过渡:知道2的倍数的特征你能快速判断一个数是不是2的倍数吗?
(4)相继出示卡片: 84、215、18、22、703、456、940、57
这是2的倍数吗?你是怎样想的?
(5)刚才找5的倍数和2的倍数的特征时,你还有没有其它发现?
学生:个位上是0的数既是2的倍数,又是5的倍数。
(三)、奇数、偶数的认识
过渡:同学们,是2的倍数的数和不是2的倍数的数,在数学中都有自己的名称,请同学们自学数学书第74页,看看它们分别叫什么?学生自学。
(1)学生汇报。(板书:偶数,奇数)
(2)师:说一说偶数有什么特点?奇数有什么特点?
(3)师:判断一个数是奇数还是偶数要看什么?
师:偶数实际上就是我们前面讲的什么数?(双数)
奇数实际上就是我们前面讲的什么数?(单数)
(4)出示卡片:请你帮忙分一分哪些是奇数,哪些是偶数?
三、练*巩固:
1、请你找一找:
21 ,1,30, 35, 39, 2, 40,
《2和5的倍数的特征》教学反思
作为一位刚到岗的人民教师,教学是我们的工作之一,对教学中的新发现可以写在教学反思中,怎样写教学反思才更能起到其作用呢?以下是小编收集整理的《2和5的倍数的特征》教学反思,仅供参考,大家一起来看看吧。
2、3、5倍数的特征我设计的是一节课,但上完这节课上完后,给我最大的感受,学生对2、5的倍数的特征不难理解,对偶数和奇数的概念也容易掌握,但我由于对教材的把握不够,时间用到2、5倍数上的较多。以至于对3的倍数特征探究不到位。
好的开始等于成功了一半。课伊始,我设计了抢“30”的游戏,目的是让学生从中找到3的倍数,但我发现这个游戏没让学生部明白要求没有能提高学生的兴趣。意义不到。数学学*过程中应该是观察、发现、验证、结论等探索性与挑战性活动。首先让学生独圈出写出100以内2、5的倍数,独立观察,看看你有什么发现?学生很容易发现他们的特征,而这只是猜测,结论还需要进一步的验证。但我对这部分的处理太过于复杂零碎。以至于用的时间过多。比如说2、5倍数与其他数位的关系,着就不是本节课的重点。
小组合作,发挥团体的作用,动手实践、合作交流是学生学*数学的重要方式。我觉得我们班小组小组合作还有很多部足的地方,比如说学生的之一能力倾听能等等还需进一步训练。
教学过程中,在学生掌握知识的同时,注重让学生了解科学的数学研究的过程。一堂课的知识目标是很容易达成,但是要渗透数学思想方法或科学的研究方法,就提出了较高要求。在课堂上引导学生现在“百数表”中找规律,再再比100大的数中举例验证。通过“猜想——验证——结论”三个流程进行研究,最后得到正确的数学结果。经过于老师的倾心评课,以下几点问题需要思考实践:
1、对学生已经发现的的问题不需再重复,这样就可以节省出教学时间。
2、偶数的定义需要学生用自己的话解释一下。对奇数的定义理解一定要讲解透彻,为以后分辨质数打下基础。
3、0,2,5排能够被5整除的数要说说排序方法,以免丢漏数。
4、第一题的问题要求再明确一些,学生答题可能会更快。
这堂课主要目标是引导孩子经历探索“2的倍数的特征”的过程,培养学生抽象、总结及概括能力,初步体会“不完全推理”的一般方法。在课前独立研究前,我首先布置了这样的两个问题:思考“我们怎样去找2的倍数的特征” 、“我们采取什么方法去找2的倍数的特征?”然后再让学生按书上的要求在百数图中独立的找出100以内2和5的所有倍数。这样孩子很自然的想到“找几个2的倍数来看看”,孩子就能够理解我们为什么要在百数图上找2的倍数,找到这些数之后,也会自发地去思考这些数有什么共同特征,而不会像牵线的木偶任我们摆布。在预*作业中我还布置了另两个问题:自学书本,弄清偶数和奇数的含义;思考能同时是2和5的倍数的数的特征。
但在课堂教学中还是出现了让人啼笑皆非的事,课始,我问学生,你知道这节课我们将会研究什么问题吗?令我意想不到的是在两个班中学生的回答如出一辙――“研究偶数和奇数”,有同学在位置上窃笑,我没有立即否定,接着问,那你知道什么叫偶数和奇数吗?(我的本意是在让学生作出正确回答后再顺势而导,偶数和奇数都是与哪个数有关,哪我们这节课只是研究2的倍数的特征吗?让他自己发现回答的不全面)可没想到的是又来了一个出人意料的回答:2 的倍数是偶数,5的倍数是奇数。既然学生的预*效果如此不理想,我决定临时改变教学策略,跳出“学程导航”的模式,重新用老方法让学生在课上再一次经历探索的过程。但是从课堂的练*看,问题还是比较严重。
于是我就有些困惑,究竟是我的教学安排出现了问题,还是在预*作业的布置中语言的交代上不够清楚呢?我们虽然主张“先学后教”,让学生课前自主探究,提倡整体预*。但我还是认为,小学生的数学思维还处在形象思维向抽象逻辑思维转变的阶段,还是需要在一定的情景中在老师的引领下合作探究,而一味盲目地让孩子独立研究,而老师又不在旁边加以及时的指导和纠正,而在认知形成的初始阶段,一旦在认识上有偏差产生错误的结论,再想反它纠正过来往往是很困难的,因为第一印象很重要。现在强调课前预*我并不反对,毕竟学*目标的指向性更明确了,长期的培养,学生的学*方法肯定会得到提高,但对数学思想方法的培养上有些弱化,另外,缺少了在具体的情景下学*,总觉得知识的*得过于直接,学生容易遗忘。因此,数学预*应因学*内容而宜,因年级而宜。
教学内容 :新课标人教版五年级下册17—18页的内容。 教学目标:
知识目标:让学生经历2和5的倍数的特征的探索过程,理解并掌握
2和5的倍数的特征,会运用这些特征判断一个数是不是2和5的倍数;知道偶数和奇数的意义,会判断一个自然数是偶数还是奇数。
能
力目标:在学*活动中培养学生的观察、分析、比较、概括能力和
合情推理能力。
情感目标:增强学生的探索意识,进一步感受数学的奇妙。 教学重点 掌握2和5倍的数的特征及奇数、偶数的概念。
教学难点 灵活运用2和5的倍数的特征及奇数、偶数的概念进行综合判断。
教学准备
教师为学生每人准备一张顺序数字卡片。
学生每人准备一张十行十列的百数表。 二、教学设计
(一)情景创设,导入新课
师:同学们,你们喜欢玩数学游戏吗?我们今天玩一个数学游戏。同学们可以随便说出一个数,老师马上就能判断出这个数是不是2或5的倍数。如果同学们有疑问,还可以用计算器进行验证。 (学生分别报数:32、485、674、260??)
师:32是2的倍数,但不是5的倍数。485是5的.倍数但不是2的倍数。674是2的倍数但不是5的倍数。260既是2的倍数也是5的倍数。你们用计算器验证的结果和老师判断的一样吗?
生1:一样。
生2:老师你是怎样迅速判断出来的呢?
师:你们想知道其中的奥秘吗?
生:(齐答)想。
师:今天我们一起来研究“2,5的倍数的特征”(板书课题:2,5的倍数的特征)。
(二)问题探究,解决问题
(媒体出示课本第4页的百数表,学生拿出学具中的百数表。)
1、提出问题
师:同学们,你们能在百数表中找出5的倍数吗?利用自己喜欢的表示方式在5的倍数上做上记号(可以用—、√、○、△等符号)。
2、自主探索,合作交流,发现规律
(学生开始找5的倍数并做记录。)
师:谁能说一说你找出了哪些5的倍数?
生:5、10、15、20、25、30、35、40??
(根据学生回答,教师板书)
师:(引导学生观察、思考)你发现5的倍数有什么特征? 生1:这些数都相隔5。
生2:这些数个位上有的是0,有的是5。
师:(引导学生归纳5的倍数的特征)你们说的都不错,个位上是0或5的数都是5的倍数。
(根据学生回答板书。)
师:(引导学生验证举例)刚才我们观察的是100以内的数,也就是说观察的是一位数或两位数。那么是不是任何一个自然数,只要是5的倍数,个位上一定是0或5呢?请同学们任意写一个个位上是0或5的多位数,大家判断一下。
(学生先在小组内交流,然后全班交流)
组1:我们列举的数有:500、4500、605、125这四个数,通过计算,发现都是5的倍数。
组2:我们验证了5个数,得出结论:只要个位上是0或5的数一定是5的倍数。
??
师:大家是用什么方法发现5的倍数特征的?
一、教学内容:
五年级下册教科书p19。
二、教学目标:
1.通过观察、猜想、验证,理解并掌握3的倍数的特征。
2.引导学生学会判断一个数是不是3的倍数。
3.培养学生分析、判断、概括的能力。
三、教学重点:
理解并掌握3的倍数的特征。
四、教学难点:
探究能被3整除数的特征。
五、教法要素:
1.已有的知识和经验:⑴猜想。⑵ 2、5的倍数特征。
2.原型:3的倍数图表。
3.探究的问题:
⑴一个数的特征的研究方法。
⑵能被3整除的数的特征。
六、教学过程:
(一)唤起与生成
从1、2、3、4、5、6中任选3个数字组成三位数,要求:
(1)是2的倍数;(2)是5的倍数。
生说师记录,并让学生说说2和5的倍数的特征。
引入:有没有能组成3的倍数的三位数?3的倍数有什么特征呢?今天我们就来研究3的倍数的特征。
(二)探究与解决
经历“猜想——验证——观察探究——验证”的全过程,探究3的倍数的特征。
1. 猜想。
激励学生大胆猜想,分小组交流,然后全班汇报。教师根据学生
的汇报进行归纳。
学生根据学过的2、5的倍数特征,可能猜测个位上是3、6、9的
数是3的倍数。
2.验证。
我们用什么方法来验证大家的猜想是不是正确呢?
让学生举出一些个位上是3、6、9的数字,小组内进行验证。小组验证中发现2种情况:个位上是3、6、9的数字不一定是3的倍数;而另一些数如12、18、21等个位上不是3、6、9的数,却是3的倍数。从而断定猜想是错误的。
小结:看来3的倍数和一个数的个位上的数无关,那与什么有关呢?
3.一个数的特征可以从哪些方面进行研究。
同学们你们知道研究一个数有什么特征,可以从哪些方面入手吗?让学生明白研究一个数的特征可以从以下几方面入手:
(1) 从一个数的个位去研究。
(2) 从一个数的十位去研究
(3) 把各个数位上的数加起来研究。
4.根据3的倍数,探究3的倍数的特征。
(1)投影出示百以内数表,学生利用p18的表。要求:在表中找
出3的倍数,并做好标记。
(2)观察这些3的倍数,根据我们了解的研究方法,寻找3的倍数 的特征。
学生先独立思考,再小组讨论,然后全班交流。小组之间相互补充、质疑。
汇报1:我们组发现个位上的数字没有什么规律,十位上的数字也没有什么规律。
汇报2:我们组发现像12、18、27、36、39 ??,这些数他们个位和十位上的数字加起来的和都是3的倍数。
5.验证。
是不是所以的数都符合呢?我们来验证一下吧。
(1) 找3的倍数来验证。
找几个3的倍数(两、三位的数),看各个数位上数的和是不是都是3的倍数。
(2) 找不是3的倍数来验证。
找几个不是3的倍数的数(两、三位的数),通过计算看看各个数位上数的和是不是3的倍数。
本节课能从认识冲突上找到突破点,再小组合作通过填写表格引导学生去发现3的倍数的特征,学生能够清晰的区分和判别3的倍数,并与2、5的倍数作比较,真正理解和辨别这几个数的倍数的特征,学生的掌握情况还是不错的。
【初次实践】
课始,让学生任意报数,师生比赛谁先判断出这个数是不是3的倍数,正当我沉浸在游戏的情境之中,几个“不识时务者”打乱了课前的预想。“老师,我知道其中的秘密,只要把各个数位上的数加起来,看看是不是3的倍数就行了!”“对!在数学书上就有这句话。”又有几个学生偷偷地打开了数学书。“怎么办?”谜底都被学生揭开了。面对这一生成,我没有死守教案,而是果断地调整了预设,变“探索”为“验证”,将结论板书在黑板上,让学生理解这句话的意思,然后组织学生将百数表中3的倍数圈出来,验证是不是具有这样的特征,最后进行一系列巩固练*……
[反思]
课堂上经常会出现类似上述案例中的“超前行为”,即有些学生提前把要探究的新知识和盘托出。我们的*惯做法就是变“探索”为“验证”,当然有些知识的教学采用这种方式是有效的,然而本课中“验证”的过程真能取代“探究发现”的过程吗?仅仅举几个例子试一试,验证方法单一,思维含量低,学生充其量只能算是执行操作命令的“计算器”,又能获得哪些有益的发展?如果经常进行这样的教学,还容易使学生形成浮躁浅薄,不求甚解,甚至只要结论的不良学*风气。怎么办,置之不理吗?如果这样,不仅没有尊重学生已有的知识经验,而且在已经揭开“谜底”的情况下,再试图引导学生进行猜想、实验、发现,体验遭受挫折后取得成功的那种激动,也只能是一种奢望。那么又该如何激发学生探究的热情,促使学生进行深入探究呢?
【再次实践】
(与第一次教学情况基本相同,有些学生能够正确地判断一个数是不是3的倍数,这时一些学生却依然感到困惑,我设法将这一困惑激发出来。)
师:同学们真能干,这么快就知道了3的倍数的特征,上节课我们学*了2、5的倍数的特征只和什么有关?
生:只和一个数的个位有关。
师:与今天学*的知识比较一下,你有什么疑问吗?
生1:为什么判断一个数是不是3的倍数只看个位不行?
生2:为什么判断一个数是不是2、5的倍数只看个位,而判断是不是3的倍数要看各位上数的和?
……
师:同学们思考问题确实比较深入,提出了非常有研究价值的问题。那我们先来研究一下2、5的倍数为什么只和它的个位有关。
(学生尝试探索,教师适时引导学生从简单数开始研究,借助小棒或其他方法进行解释。)
生1:我在摆小棒时发现,十位上摆几就是几十,它肯定是2、5的倍数,因此只要看个位摆几就可以了。
生2:其实不用摆小棒也可以,我们组发现每个数都可以拆成一个整十数加个位数,整十数当然都是2、5的倍数,所以这个数的个位是几就决定了它是否是2、5的倍数。
师:同学们想到用“拆数”的方法来研究,是个好办法。
生3:是否是3的倍数只看个位就不行了。比如13,虽然个位上是3的倍数,但10却不是3的倍数;12虽然个位不是3的倍数,但12 = 10 + 2 = 9 + 1 + 2 = 9 + 3,因此只要看十位上余下的数和个位上的数合起来是不是3的倍数就行了。
生4:我也是这样想的,我还发现十位上余下的数正好和十位上的数字一样。
生5:(面带困惑)起初,我也是这样想的,可是在试三十几、四十几时就不行了。余下的数和十位上的数不一样了,比如40除以3只余1,余下的数就和十位数字不同。
生(部分):对。
生4:其实40不要拆成39和1,你拆成36和4,余下的数不就和十位数字相同了吗?
生6:也就是说整十数都可以拆成十位上的数字和一个3的倍数的数。这样只要看十位上的数和个位上的和是不是3的倍数就可以了。
师:同学们确实很厉害!那三位数、四位数是不是也有这样的规律呢?
学生用“拆数”的方法继续研究三、四位数,发现和两位数一样,只不过千位、百位上余下的数要依次加到下一位上进行研究。3的倍数的特征在学生头脑中越来越清晰。
师:同学们通过自己的探索,你们不仅发现了3的倍数的特征,还弄清了为什么有这样的特征。现在你还有哪些新的探索想法呢?
生1:我想知道4的倍数有什么特征?
生2:我知道,应该只要看末两位就行了,因为整百、整千数一定都是4的倍数。
师:你能把学到的方法及时应用,非常棒!
生3:7或9的倍数有什么特征呢?
……
师:同学们又提出了一些新的、非常有价值的问题,课后可以继续进行探索。
[反思]
1. 找准知识间的冲突,激发探究的愿望。学生刚刚学*了2、5的倍数的特征,知道只要看一个数的个位,因此在学*3的倍数的特征时,自然会把“看个位”这一方法迁移过来。而实际上,3的倍数的特征,却要把各个位上的数加起来研究。于是新旧知识之间的矛盾冲突使学生产生了困惑,“为什么2或5的倍数只看个位?”“为什么3的倍数要把各个位上的数加起来研究?”……学生急于想了解这些为什么,便会自觉地进入到自主探究的状态之中。知识不是孤立的,新旧知识有时会存在矛盾冲突,教师如能找准知识间的冲突并巧妙激发出来,就能激起学生探究的愿望。这样不仅有利于学生对新知的掌握,有效地将新知纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。
2. 激活学*中的困惑,让探究走向深入。创造和发现往往是由惊讶和困惑开始。对比两次教学,第一次教学由于忽视了学*中的困惑,学生对于3的倍数的特征理解并不透彻,探索的体验也并不深刻。第二次教学留给学生质疑的时空,巧设冲突,让学生进行新旧知识的对比,将困惑激发出来,通过学生间相互启发、相互质疑,对问题的思考渐渐完整而清晰。学生不但经历由困惑到明了的过程,而且思维不断走向深入,获得了更有价值的发现,探究能力也得到切实提高。学生在学*中难免会产生困惑,这种困惑有时是学生希望理解更全面、更深刻的表现。面对这些有价值的思考,我们要有敏锐的洞察力,采取恰当的方法将其激活,促使探究活动走向深入,让学生获得更大的发展。当然,学生在学*中可能产生怎样的困惑,面对这一困惑又该如何恰当引导,尚需要教师课前精心预设。
3. 沟通知识间的联系,让学生不断探究。显然,2、5的倍数的特征与3的倍数的特征是相互联系的,其研究方法是相通的(都可以通过“拆数”进行观察),特征的本质也是相同的。这种研究方法和特征本质的及时沟通,激发了学生继续研究4、7、9……的倍数的特征的好奇心,促使学生不断探究,将学*由课内延伸到课外,并在探究过程中建构起对数的倍数特征的整体认识,感悟数学其实就是以一驭万,以简驭繁。课堂不是句号,学生的发展始终是教学的落脚点。我们的教学绝不能仅仅局限于学生对于一堂课知识的掌握,而应着眼于学生对于解决问题方法的感悟,获得可持续发展的动力。
《3的倍数的特征》的教学是五下数学第二单元“因数与倍数”中一个知识点,是在学生已认识倍数和因数、2和5倍数的特征的基础上进行教学的。由于2、5的倍数的特征从数的表面的特点就可以很容易看出——根据个位数的特点就可以判断出来。但是3的倍数的特征却不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。因而在《3的倍数的特征》的开始阶段我复*了2、5的倍数的特征之后就让学生猜一猜什么样的数是3的倍数,学生自然而然地会将“2.5的倍数的特征”迁移到“3的倍数特征的问题中, 得出:个位上是3、6、9的数是3的倍数,后被学生补充到“个位上是0—9的任何一个数字都有可能是3的倍数,”其特征不明显,也就是说3的倍数和一个数的个位数没有关系,因此要从另外的角度来观察和思考。
在问题情境中让学生产生认知冲突,萌发疑问,激发强烈的探究欲望。接着提供给每位学生一张百数表,让他们圈出所有3的倍数,抛出问题:把 3 的倍数的各位上的数相加,看看你有什么发现,引导学生换角度思考3的倍数特征 。学生在经历了猜测、分析、判断、验证、概括、等一系列的数学活动后感悟和理解了3的倍数的特征,引导学生真正发现:3的倍数各位上数的和一定是3的倍数;不是3的倍数各位上数的和一定不是3的倍数。从而,使学生明确3的倍数的特征,然后进行练*与拓展。这样的探究学*比我们老师直接教给他们答案要扎实许多,之后的知识应用学生就相应比较灵活和自如,效果较好。
这节课结束后,我感觉最大的缺憾之处在最后的拓展练*上,由于自己事先练*下水没有做足,所以误导了学生。题目如下:“从3、0、4、5这四个数中,选出两个数字组成一个两位数,分别满足以下条件:
1、是3的倍数。
2、同时是2和3的倍数。
3、同时是3和5的倍数。
4、同时是2、3和5的倍数。”学生问要写几个时,我回答如果数量很多至少写3个。呵呵,其实此题不需要如此考虑,因为它们的数量都有限。
希望以后自己的教学会更扎实起来。
《3的倍数的特征》是五年级下册数学第二单元“因数与倍数”中的一个知识点,是在学生已经认识倍数和因数、2和5倍数的特征的基础上进行教学的。由于2.5的倍数的特征从数的表面的特点就可以很容易看出——根据个位数的特点就可以判断出来。但是3的倍数的特征却不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。
因而在《3的倍数的特征》的开始,我先复*了2.5的倍数的特征,然后学生猜一猜什么样的数是3的倍数,学生自然而然地会将“2.5的倍数的特征”迁移到“3的倍数特征的问题中,得出:个位上是3、6、9的数是3的倍数,后被学生补充到“个位上是0—9的任何一个数字都有可能是3的倍数,”其特征不明显,也就是说3的倍数和一个数的个位数没有关系,因此要从另外的角度来观察和思考。在问题情境中让学生产生认知冲突产生疑问,激发强烈的探究欲望。接着提供给每位学生一张百数表,让他们圈出所有3的倍数,抛出问题:把3的倍数的各位上的数相加,看看你有什么发现,引导学生换角度思考3的倍数特征。接下来,经过进一步提示,引导学生观察各位上数的和,发现各位上的和是3的倍数。于是,形成新的猜想:一个数如果是3的倍数,那么它各位上数的和也是3的倍数。
为了验证这一猜想,我补充了一些其他的数,如49×3=147,166×3=498等,使学生进一步确认这一结论的正确性。还可以任意写一个数,利用这一结论来验证,如3697,3+6+9+7=25,25不是3的倍数,而3697÷3也不能得到整数商,因此,它不是3的倍数。通过这样的方式也使学生认识到:找出某个规律后,还要找出一些正面的、反面的例子进行检验,看是不是普遍适用。
为了使学生更好地掌握3的倍数的特征,进行课堂练*时,我还把一些数各个数位上的数经过不同的排列,再让学生判断,以加深对“各位上数的和是3的倍数”的理解。如完成“做一做”第1题时,学生判断完45是3的倍数后,教师可以再让学生判断一下54是不是3的倍数。
利用2、5、3的倍数的特征来判断一个数是不是2、5或3的倍数,其方法是比较容易掌握的,但要形成较好的数感,达到熟练判断的程度,也不是一、两节课所能解决的,还需要进行较多的练*进行巩固。
这节课结束后,我感到自主学*和合作探究是这节课中最重要的两种学*方式,学生通过自主选择研究内容,举例验证等独立思考和小组讨论,相互质疑等合作探究活动,获得了数学知识。学生的学*能动性和潜在能力得到了激发。在自主探索的过程中,学生体验到了学*成功的愉悦,同时也促进了自身的发展。但最大的缺憾之处,最后总结3的倍数特征时,应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。而练*题方面,也应形式面多样化。
3的倍数的特征的教学与2.5倍数的特征难度上有不同,因为2.5的倍数的特征从数的表面的特点就可以很容易看出(根据个位数的特点就可以判断出来),但是3的倍数的特征却不能从表面去判断,因而我特设以下环节突破重难点预*题。
1、给出一些数让学生先判断哪些数是3的倍数。并让学生说一说你是怎么判断的?
2、从以上的3的倍数进行思考:
(1)、3的倍数与它个位上的数有关系吗?
(2)、 3的倍数的各位上的数的和都是3的倍数吗?
新课时让学生从上面的练*中去发现了什么,从而归纳3的倍数的特征:一个数的各个数位上的数字和是3的倍数,这个数就是3的倍数
然后再让每个同学任意写一个3的倍数,再看看这个数的各个数位上的数的和是不是3的倍数。要求学生说出方法和思路。
经过以上这些活动后学生都能对一个数是不是3的倍数进行简单的判断。特别是学生对3的倍数特征的判断大多数的学生能先求出各个数位的数字之和是不是3的倍数,然后再进行判断,效果很好。
1.找准知识间的冲突,激发探究的愿望。
学生刚刚学*了2、5的倍数的特征,知道只要看一个数的个位,因此在学*3的倍数的特征时,自然会把“看个位”这一方法迁移过来。而实际上,3的倍数的特征,却要把各个位上的数加起来研究。于是新旧知识之间的矛盾冲突使学生产生了困惑,“为什么2或5的倍数只看个位?”“为什么3的倍数要把各个位上的数加起来研究?”……学生急于想了解这些为什么,便会自觉地进入到自主探究的状态之中。知识不是孤立的,新旧知识有时会存在矛盾冲突,教师如能找准知识间的冲突并巧妙激发出来,就能激起学生探究的愿望。这样不仅有利于学生对新知的掌握,有效地将新知纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。
2.激活学*中的困惑,让探究走向深入。
创造和发现往往是由惊讶和困惑开始。对比两次教学,第一次教学由于忽视了学*中的困惑,学生对于3的倍数的特征理解并不透彻,探索的体验也并不深刻。第二次教学留给学生质疑的时空,巧设冲突,让学生进行新旧知识的对比,将困惑激发出来,通过学生间相互启发、相互质疑,对问题的思考渐渐完整而清晰。学生不但经历由困惑到明了的过程,而且思维不断走向深入,获得了更有价值的发现,探究能力也得到切实提高。学生在学*中难免会产生困惑,这种困惑有时是学生希望理解更全面、更深刻的表现。面对这些有价值的思考,我们要有敏锐的洞察力,采取恰当的方法将其激活,促使探究活动走向深入,让学生获得更大的发展。当然,学生在学*中可能产生怎样的困惑,面对这一困惑又该如何恰当引导,尚需要教师课前精心预设。
3.沟通知识间的联系,让学生不断探究。
显然,2、5的倍数的特征与3的倍数的特征是相互联系的,其研究方法是相通的(都可以通过“拆数”进行观察),特征的本质也是相同的。这种研究方法和特征本质的及时沟通,激发了学生继续研究4、7、9……的倍数的特征的好奇心,促使学生不断探究,将学*由课内延伸到课外,并在探究过程中建构起对数的倍数特征的整体认识,感悟数学其实就是以一驭万,以简驭繁。课堂不是句号,学生的发展始终是教学的落脚点。我们的教学绝不能仅仅局限于学生对于一堂课知识的掌握,而应着眼于学生对于解决问题方法的感悟,获得可持续发展的动力。
《2、5、3倍数的'特征练*课》是一堂练*课,本节课是在学生已经学*了2,5,3倍数的特征的基础上进行教学的。为以后学*分数,特别是约分、通分,需要以因数倍数的知识的概念为基础,到进一步掌握公因数、最大公因数和公倍数、最小公倍数的概念,需要用到质数、合数的概念,而最基础的就是掌握2,5,3的倍数的特征。从开始学*2,5的倍数特征仅仅体现在个位数上,到学*3的倍数特征时从只看个位转向考察各位上的数相加的和,学生已经有了思路上的转变,思维的转折,观察角度的改变,以此让学生自主探索4的倍数特征,但由于与2,5,3的倍数特征又有些许不同,对学生依然有一定难度。
如果只是单一的做*题,势必有学生会感到枯燥无味,这样子学生的学*效果难以保障,对教师的功底与教学策略有很大的挑战。因此课堂伊始,我直接开门见山式的先对前面学*的知识进行复*梳理,接着利用学生感兴趣也是正在使用着的工具——“手机”的锁屏密码为线索,通过提示让学生解密码的方式激发学生的学*兴趣,然后以破解后的密码1080,导出本节课我们要重点探究的4的倍数特征。让学生带着趣味,自主的去探索。由于有了前面探索2,5,3倍数特征的基础在,所以在探索4的倍数特征时放手让学生通过操作,观察,思考从而有所发现,体验探索的乐趣。接着通过计数器,让学生明白判断4的倍数特征背后的原理。最后在练*巩固中,逐渐熟练应用所学知识,感知数学知识和我们的生活紧密联系。如何让练*课不仅仅只是做练*,让学生能在练*中获得对知识的理解以及思维上实质的提升,仍然值得我在好好的去思考探索。
《3的倍数的特征》看似一节知识简单的课,但从教学实际来看,是我想得过于简单了,教师注重的不应该仅仅是对知识的掌握,更应该使学生站在跳板上学*数学,关注数学思维的发展 。
“3的倍数的特征”属于数论的范畴,离学生的生活较远,有一定的难度。而2、5的倍数的特征是学生学*这一课的基础。所以,在教学“3的倍数的特征”时,我首先以学生原有认知为基础,激发学生的探究欲望,利用学生刚学完“2、5的倍数的特征”产生的负迁移,直接抛出问题,激活了学生的原有认知,学生自然而然地会将“2、5的倍数的特征”迁移到“3的倍数的特征”的问题中,由此产生认知冲突,萌发疑问,激发强烈的探究欲望,因此学生很快进入问题情境,猜测、否定、反思、观察、讨论,使得大部分学生渐渐进入了探究者的角色。但针对这样的环节,也有老师提出反对意见,他们认为教师在教学中不仅要注重知识的正迁移,还要防止负迁移的产生,要能正确地预见学生学*中可能出现的错误,采取适当措施,防患于未然,达到所谓“防微杜渐”的目的;他们满足于学生的一路凯歌,陶醉于学生的尽善尽美,视学生的差错为洪水猛兽。但是课堂就是学生出错的地方,出错是学生的权利,学生的错误是劳动的成果,关键是要看我们教师如何看待学生的错误,有个教育专家说得好:“课堂上的错误是教学的巨大财富”。正式因为如此,我们的新课堂也呼唤“自主、合作、探究”,而真探究必然伴随大量差错的生成,学生总会出现各种各样的错误,我们的课堂教学不应该有意识地去避免学生犯错误。因此,我们教师在课堂中要有沉着冷静的心理、海纳百川的境界和从容应变的机智,给学生一个出错的机会和权利。
其次,看一个数是不是2、5的倍数,只需看这个数的个位。个位是0、2、4、6、8的数就是2的倍数,个位是0、5的数就是5的倍数。而3的倍数特征则不然,一个数是不是3的倍数,不能只看个位,而要看它所有所有数位上的数的和是不是3的倍数。在教学中,我和大多数的教师一样,更多的是关注两者的不同,注重让学生对两种特征进行区分,因此,教学中往往刻意对比强化,凸显这种差异。但这样的处理很明显在数论的角度上割裂了两者的共同点。实际上教师在引导学生发现3的倍数的独特特征的同时,也应该注意引导学生归纳2、3、5倍数特征的共同点。别小看这寥寥数言的引导,实质它蕴藏着深意。因为从数论角度讲一个数能否被2、3、5乃至被其它数整除,其研究的理论基础是一样的:即如果各个数位上的数被某数除,所得的余数的和能够被某数整除,那么这个数也一定能被某数整除。当然,小学生由于知识和思维特点的限制,还不可能从数论的高度去建构与理解。但是,这并不意味着教师不可以作相应的渗透。事实上,正是由于有了教师看似无心实则有意的点拨:“其实3的倍数特征与2、5的倍数特征其实有一点还是很像的,不知同学们注意到没有?”学生才可能从2、3、5倍数特征孤立、割裂、甚至是相互对立的表象中跳离出来,朦胧地感受到这三者之间的联系:2、3、5倍数特征可以看作是一样的,都是看它是不是谁的倍数,只不过判断一个数是不是2、5的倍数,只需看这个数的个位是不是2、5的倍数,而判断一个数是不是3的倍数就要看它所有数位的和是不是3的倍数。
《3的倍数的特征》是学生在学*过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。
1、找准知识冲突激发探索愿望。
找准备知识中冲纷激发探索,在第一环节中我先让学生复*2.5的倍数特征并对一些数据做出了判断而后我们“谁来猜测一下3的倍数特征”激发学生探究的愿望。由于学生刚刚复*了2.5倍数的特征,知道只要看一个数的个位,因此在学*3的倍数特征时,自然会把“看个位”这一方法迁移过来。但实际上,却不是这样,于是新旧知识间的矛盾冲突使学生产生了困惑,有了新旧知识的矛盾冲突,就能激发起学生探究的愿望,这样不反有利于学生对新知识的掌握,有效的将新知识纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。
2、激发学*中的困惑,让探究走向深入。
找准知识之间的冲突并巧妙激发出来,这是一节课的出彩之处,而我从孩子们的学号为入重点,让孩子们判断自己的学号是否是3的倍数,并再次探究3的倍数特征,并且发现3的倍数和数字排列顺序的有关系。但和这个数的个位上的数字有关。使之所探究的问题是渐渐完整而清晰,而后我又组织孩子们用摆小棒的方法来探究和验证,这种层层递进环环相扣的方法,促使探究活动走向深入,让学生获得更大的发展。
3、课后反思使之完美。
这节课结束后,我感觉最大的缺憾之处,最后点选了的倍数特征时,应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。而老练*题方面,也应形式面多样化,如用卡片练*判断,或通过打手势的方法或先听老师——这样效率更高,课堂氛围好,课堂不是同步,学生的发展始终是教学的落脚点。我们的教学应着眼于学生对解决问题方法的感悟,这样才可获得可持续发展的动力。
3的倍数是在学*了2、5的倍数特征的基础上进行学*的,我让孩子们提前进行了预*,通过授课发现孩子们的预*没有达到预想的效果。学生在汇报时能够圈出3的倍数,而且非常准确,在汇报3的倍数的方法时,他们大多数是借助结论得出来的,没有体现出他们研究的过程。因此,我在课上进行了及时的指导,把孩子们需要汇报的过程进行了详细的说明。孩子们很快理解了我的意思,立刻进行了新的分工。第一位同学汇报了他们找到的3的倍数,并介绍的找3的倍数的方法即,用这个数除以3,看商是不是整数而且没有余数。接下来汇报百数表中前十个3的倍数,让大家观察个位上的数字,通过观察发现3的倍数个位上是0-9的任意一个数,不能像2、5的倍数特征只看个位的特殊数就行了。因此只看个位不能确定是不是3的倍数。
由于孩子们有了提前的预*,孩子们心目中已经有了结论。因此在这个时候孩子们思考的深度不够,没有理解教材的意图。教师把教材的意图有意识地进行了渗透,让学生驻足片刻,把握课堂的结构。
第三个环节,孩子们发现斜着看每个数的各位逐渐加一,十位逐渐减一,因此个位上的数字和十位上的数字之和不变,而且都是3的倍数。让孩子试着总结结论:两位数个位上和十位上的数字之和是3的倍数,那么这个数也是3的倍数。
第四个环节,其实并不是把3的倍数特征总结出来了就完成任务了。这个结论只是通过观察百数表得出的关于两位数的结论,两位数满足这个特征,是不是所有的数都适用呢?于是让孩子试着写一个三位数、四位数而且是3的倍数,然后用这个结论进行验证,看是否符合。孩子们先试着写几个3的倍数,老师罗列到黑板上,然后分别用用各个数位之和相加的方法和除以3是否有余数的方法进行验证。验证的结果是肯定的,因此得出的结论适合所有的数。
到这里孩子们对于3的倍数特征已经理解的很透彻了,做起练*来也显得得心应手。孩子体验了结论得出的过程,每一个环节的设计都有他的意图,在每个环节孩子都有思考,有思维的碰撞,这才是教材的意图,才是真正的数学课。
心理学原理表明,新异的刺激可以引起学生的注意和兴趣。在教学中,根据不同的教材和要求,采取不同的教学方法,能够引起学生学*的兴趣,有利于创设良好的课堂气氛。
教学3的倍数特征这一课时,教师组织学生进行下列巩固练*:
下列数中3的倍数有:()
1435451003328767488
学生利用3的倍数的特征一下子就回答了上面的问题,得到了老师的肯定。这时我接着说:“我们来一场老师、学生打擂台怎么样?看谁说的3的倍数的数最多,我们看谁能考倒老师。”这时同学们兴趣盎然,纷纷出题来考老师。
生:42
师:111
生:78
师:57
生:81
师:20xx
生:6891
…………
这时师故意出错:369041
《2、5倍数的特征》教学设计
《2、5倍数的特征》教学反思
有关25倍数的特征优秀教案
《3的倍数的特征》教学设计
人教版25倍数的特征优秀教案
3的倍数的特征教学设计
《3的倍数的特征》教学反思
《3的倍数的特征》教案
数学《3的倍数的特征》教案
倍的认识教学设计
因数和倍数教学设计
有关25的倍数特征教案导入
《倍数和因数》教学设计
《因数与倍数》教学设计
《倍的认识》数学教学设计
《倍的认识》教学设计
《因数和倍数》教学设计
因数与倍数教学设计
《每逢佳节倍思亲》教学设计
《数松果》教学设计
有关2和5的倍数特征教案
《最小公倍数》教学设计
每逢佳节倍思亲教学设计
《猜数游戏》教学设计
数的认识教学设计
*均数教学设计
《有理数》教学设计
识字3教学设计
《*作3》教学设计
《练*3》教学设计