关于《3的倍数的特征》教学设计的文字专题页,提供各类与《3的倍数的特征》教学设计相关的句子数据。我们整理了与《3的倍数的特征》教学设计相关的大量文字资料,以各种维度呈现供您参考。如果《3的倍数的特征》教学设计未能满足您的需求,请善用搜索找到更适合的句子语录。
2、5倍数的特征教学设计
作为一名为他人授业解惑的教育工作者,通常需要准备好一份教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。写教学设计需要注意哪些格式呢?下面是小编为大家收集的2、5倍数的特征教学设计,欢迎阅读,希望大家能够喜欢。
知识目标:
1、在解决具体问题的过程中,探索2、5倍数的特征,能找出100以内的2,5的倍数,能迅速判断一个数是否是2、5的倍数。
2、初步理解奇数、偶数的概念。
能力目标:
1、经历探究2,5倍数的特征的过程,能举出生活中的数,再判断是奇数还是偶数。
3、在探索活动中,发现观察、分析和归纳概括能力,培养类推能力及主动获取知识的能力。
情感目标:通过探索活动,感受数学思考过程的条理性,发展初步的归纳、推理能力,激发探索规律的兴趣。
教学重点:掌握2、5的倍数的特征及奇数、偶数的概念。
教学难点:1、掌握既是2的倍数,又是5的倍数的特征。
2、利用所学知识解决生活中的数学问题。
教学方法:引导探究法、练*法、讨论法、讲解法
教学过程
(一)情境导入
每年的六一啊,都是大家最开心的时候了,有许多的活动可以参加。看,这是某小学准备在六一表演的集体舞节目,从这些信息中,你能提出哪些数学问题?
预设:跳交谊舞的一共有多少人?圆圈舞和叠罗汉的一共有多少人参加。
师:那么跳交谊舞的选多少人参加合适呢?你大胆猜一猜。
学生猜测数据,教师板书。并启发学生:能不能把所有适合交谊舞表演的人数用一句话概括呢?
预设:“参加交谊舞表演的人数应该是2的倍数。”接着再让学生说一说圆圈舞的人数应该是多少人?用一句话概括一下,板书5的倍数。
观察,2的倍数,5的倍数,它们都有什么特征?是不是所有的2的倍数都有这样的特征呢?这节课我们就来研究2,5的`倍数特征。
(二)探究学*
1、探究2的倍数
教师:下面我们来研究一下2的倍数特征,老师为大家提供了一张百数表,你可以在百数表上把2的倍数圈出来。如果有的同学想挑战一下自己,可以在本上列举一些百数表上没有的2的倍数,然后看看这些数是不是具有这样的特征。一会我们来交流,好吗?
2、交流:说明要求,先说你是用什么方法找到2的倍数的,再说说2的倍数由什么特征。
预设:我用百数表来找到了2的倍数,我发现……
师:谁也是用百数表来找的举手?说说你们的发现。
预设:都是双数
师:是双数吗?是一个个算的,还是一眼就看出来的。
能说说是怎么一眼看出来的吗?
预设2:个位上是0,2,4,6,8。
师:同意他的说法吗?那2的倍数跟十位没有关系吗?(没有,因为十位上可以是1~9
刚才谁是在本上举例的?来交流验证一下。三位数,四位数,五位数,六位数,都符合这个特征码?
师:通过刚才的广泛验证,我们发现,无论是几位数,只要个位上的数是0,2,4,6,8的数,就都是2的倍数
像这些2的倍数都是偶数,不是2的倍数的数就是奇数。
3、探究5的倍数
刚才同学们表现非常出色,借助百数表和列举法自主探究出了2的倍数特征。那么有没有信心用刚才的方法独立探究一下5的倍数有什么特征?
师:找到5的倍数特征了吗?把你的想法在小组交流一下。
预设:我用列举法找到
预设:我在百数表上找的。
大家同意他的看法吗?是不是所有的5的倍数个位上都是0或5呢?能举个多位数的例子来验证一下吗?再来个反例。
通过举例验证,我们得出了5的倍数特征:(板书:个位上是0,,5
3、对比观察
比较一下2和5的倍数特征有哪些共同点?
预设1:都要看个位
预设2:个位上是0的数是2的倍数,也是5的倍数
教师总结:大家自己归纳的结论,在实际应用中肯定会得心应手的。
(三)分层练*
1、初显身手
找2,5的倍数
说一说你是怎么找的。
一、课前准备
1.上节课我们认识了倍数,那么什么是倍数?请举例说明。
2.你对倍数还有什么认识?
一个数的最小倍数是它本身,一个数的倍数的个数是无限的,没有最大的倍数。
二、创设情境
师生进行猜数游戏,学生说出一个自然数,教师马上判断是否是2、5的倍数。由此引入学*的需求。
师:同学们,今天老师和你们一起玩个猜数游戏,好吗?你们任意说出一个自然数,不管是几位数,我都能很快的判断出它是否是2或5的倍数。不信可以试试看。
学生报数,老师答,同时请大家验证。
三、学生尝试
教师说数,学生判断。
师:你们想知道老师为什么不计算就能马上判断出来吗?老师告诉你们,学了今天的知识,你们就知道老师猜数的奥秘了。
四、自主探索
1.出示1~100的自然数表,提出找2、5倍数的要求,让学生用自己的方法找出5的倍数、2的倍数。
师:请同学们打开书86页,看一看在1~100的自然数中,找出5的所有倍数,用红笔圈出来;再找出2的所有倍数,用蓝笔圈出来。
学生在1~100自然数表中用自己的方法找2、5的倍数,教师巡视指导。
2.全班交流,先说一说是怎样找的,再说2的倍数有哪些数,5的倍数有哪些数。要给学生充分表达的机会。
师:谁来说一说你是怎样找的?2和5的倍数分别有哪些?
生1:我先利用乘法口诀找,一二得二,……,我发现偶数都是2的倍数。
生2:利用除法找,分别除以2或5,若没有余数就是它们的倍数。
生3:上节课找出了2、5的倍数,直接圈出来。
生4:5的倍数好找,除了5,几十5就是整十数。
3.提出“议一议”的问题,引导学生观察、讨论5的倍数、2的倍数分别有什么特征。要给学生充分的讨论、交流时间。
师:请同学们仔细观察,5的倍数,有什么特征?
生:5的倍数个位上不是5就是0。
生:5的倍数,个位上的数是0或5。
师:2的倍数又有什么特征?
生:2的倍数,个位上的数是0、2、4、6、8。
生:2的倍数都是偶数……
教师予以肯定并随机指出2的倍数都是偶数,不是2的倍数的就是奇数。
4.在充分交流的基础上,总结出5的倍数的特征,2的倍数的特征。
师:根据刚才大家的发现,谁能总结一下,5的倍数有什么特征?2的倍数有什么特征?
学生可能会说:
●个位上是0、2、4、6、8的数都是2的倍数;
●个位上是0或5的数都是5的倍数。
5.师生再次进行猜数游戏,教师说数,让学生判断是2的倍数还是5的倍数。
师:现在,你们知道老师猜数的奥秘了吗?
师:现在老师说数,请同学们判断出它是不是5或2的倍数?
教师随机说数,学生判断。关注学*有困难的同学。
教学目标:
1、经历探索2、5的倍数特征的过程,理解2,5的倍数特征。能判断一个数是否为2或5的倍数
2、了解奇、偶数的含义,能判断一个非零自然数是奇数或偶数
3、在观察、猜测和讨论过程中,发展探求问题和解决问题的能力
重点难点:
重点:掌握是2、5倍数的数特征及奇数、偶数的概念。
难点:灵活运用是2、5倍数的数的特征及奇数、偶数的概念进行综合判断。
课 型:新授课(概念教学)
教学时数:1课时
教学准备:
教具:百数表
学具:数字卡片
教学过程:一、游戏导入,揭示目标
教学目标:
知识与技能
1、学生经历2、5倍数的特征的探索过程,掌握2、5倍数的特征,会正确判断一个数是不是2、5的倍数。
2、在观察、猜想、验证和讨论的过程中,提高探究问题和合作学*的能力。
过程与方法
在合作学*中培养学生观察、分析、判断的能力,使学生逐渐形成合作意识和初步的探索精神。
情感、态度和价值观
培养学生学**惯的养成,培养学生自主学*的策略,养成良好品质。
教学重点:归纳、概括2和5的倍数的特征。
教学难点:运用2和5的倍数的特征解决问题。
教学过程:
一、游戏引入
1、数学王国里的5部落和2部落要召回散落在外的人马了,召回条件:5部落只召回5的倍数,2部落只找回2的倍数。
2、师生比赛找5的倍数和2的倍数。
3、老师之所以获胜,是因为运用了“2、5的倍数的特征”(板书课题),看到课题,你有什么问题要问吗?
同学们有这么多的问题,下面我们就带着这些问题开启今天的探索之旅,一起探究2、5的倍数的特征。
二、自主探究
1、拿出尝试研究单,完成第一题。
读要求,自主找到1—100中2的所有倍数和5的所有倍数。
2、汇报找倍数的方法和结果。
三、小组讨论交流
1、仔细观察5的倍数和2的倍数,看看你有什么发现?把你的想法和小组同学进行交流,共同完成尝试研究单的第二题。
2、小组讨论。
四、汇报交流
1、汇报5的倍数特征。
(1)哪个小组来汇报5的倍数有什么特征?
(2)谁能举个更大一些的数来进行验证?
(3)小结:5的倍数的特征是:个位上是5或0。
2、汇报2的倍数的特征。
(1)哪个小组来汇报2的倍数有什么特征?
(2)谁能举个更大一些的数来进行验证?
(3)小结:2的倍数的特征是:个位上是2、4、6、8、0。
3、汇报既是2的倍数又是5的倍数的特征。
(1)观察最后一列,你有什么发现?
(2)一个数既是2的倍数,又是5的倍数,有什么特征?
五、教师点拨
我们通过观察、比较、猜想、验证知道了5的倍数的特征和2的倍数的特征,以后我们再来判断一个数是不是5的倍数和2的倍数可以只看个位就行了。
六、挑战自我
1、将下面的数填写在合适的圈里。
18、24、30、31、45、56、60、72、75、80、95、100
2、一本30页的画册,翻开后看到两个页码,其中有一个既是2的倍数,又是5的倍数。想一想:看到的可能是哪两页?
3、学校举办集体舞比赛,分“双人舞”和“五人舞”两个项目。看下面几个班的学生人数,你认为各班表演哪种舞蹈比较合适?为什么?
七、总结收获
这节课你有什么收获?
八、板书设计2和5的倍数的特征教学设计篇三教学目标:
1、让学生经历2和5的倍数特征的探索过程,理解并掌握2和5的倍数的特征,会运用这些特征判断一个数是不是2和5的倍数;知道偶数和奇数的意义,会判断一个自然数是偶数还是奇数。
2、在学*活动中培养学生的观察、分析、比较、概括能力和合情推理能力,增强学生的探索意识,进一步感受数学的奇妙。
目标预设:
1.让学生经历探索2、5倍数特征的过程,理解2、5倍数的特征,能熟练判断一个数是不是2或5的倍数。
2. 知道奇数与偶数的含义,能熟练判断一个数是奇数或偶数。
3.在观察、猜测过程中提高探究问题的能力。
一、教学目标设置:
依据一:《课程标准》
1、总体和学段目标中的描述:
(1)体验从具体情境中抽象出数的过程,掌握必要的运算技能。
(2)初步学会与他人合作解决问题,尝试解释自己的思考过程。
2.内容目标中的描述:
掌握因数和倍数、质数和合数、奇数和偶数等概念,以及2、3、5的倍数的特征.
依据二:《教师教学用书》中的单元目标的具体描述。
使学生通过主探索,掌握2,5,3的倍数的特征。
依据三:教材和学情
教材分析:
教材把课题确定为“探索活动”,其目的就是要让学生经历探索知识的过程。教材首先提出“我们研究了2、5倍数的特征,那么,3的倍数有什么特征”的问题,目的是引导学生思考和探索3的倍数的特征。教材提供了一张100以内的数目表,引导学生发现3的倍数特征。学生在探索过程中,发现3的倍数特征与2和5的倍数特征的不同,2、5的倍数特征主要观察数的个位,而3的倍数特征要观察各个数位数字的和是否是3的倍数。从而发现个位和十位都没有什么规律,而要找到各个数位上的和有什么规律。在初步得出结论的基础上,教师应进一步提出“这个规律对三位数是否成立”的问题,促使学生能自己造出更大的数来验证规律。需要注意的是在日常的练*与评价时,一般只要求学生判断100以内的数是否是3的倍数。因此,本课着重引导学生找到和发现着重点,从而归纳概括了3的倍数的特征。
学情分析:
学生在学*本课之前,已经学*了2和5的倍数的特征,养成善于动脑思考、讨论、交流与研究,积极进行小组合作的*惯。可以说,学生有了一定的自学与研究的能力。
学生容易从末尾数字进行判断这个数是否是3的倍数。所以,在教学本课时,让学生通过观察、思考、分析、归纳等活动,让他们真正理解、掌握、判断3的倍数的方法。
鉴于以上分析,本节课教学重难点:
经历3的倍数的特征的探索过程,掌握3的倍数特征。
教学目标:
1.通过观察、小组交流等活动,经历探索3的倍数的特征的过程,掌握3的倍数的特征,会判断一个数是不是3的倍数。
2.培养发展学生分析、观察、比较、操作、概括、猜测、验证、归纳的能力。
3.学生通过探索与亲身参与实践活动,并能在活动中获得成功情感的体验。
二、教学评价的设计:
1、在小组内说一说3的倍数的特征。
2、对同学板演情况进行正确判断,并能独立完成课堂练*题。
三、教学过程:
一、生活激趣,导入新知
1、新闻导入:1月28日讯,郑州市实验小学多功能大厅内掀起了一场爱心捐款的热潮。学生们以班为单位,老师们以级部为单位纷纷走到捐款箱前,把一颗颗滚烫的爱心、一句句殷切的祝福,献给该校五年级七班一名身患再生障碍性贫血的同学张森。活动场面热烈,真情感人,整个大厅内爱心涌动,给人无限的温暖。本次活动全校师生共捐款85332元,用于张森同学的检查和治疗。
此次爱心捐助活动,充分体现了实验小学师生团结互助的高尚情操和关爱帮助困难学生的人文精神,践行了“一方有难,八方支援”的传统美德。广大师生纷纷表示,希望张森同学在全体师生的关心支持下坚强地战胜疾病,早日康复,重返实验小学温暖的大家庭!
2、让学生分别判断85332是不是2、5的倍数,并说明理由。
结合学生的回答,板书:2、5的倍数看个位。
如果将这些钱*均支付3次张森同学的手术费,不计算能判断每次手术费得到的钱数是不是整元数吗?
你猜想什么样的数是3的倍数?
同意他的猜想吗?(同意)
他的猜想对不对呢?我们来继续研究。
出示1~99的数表,让学生找出3的倍数。
思考一下这位同学的猜想是否正确?
学生从不同角度举例否定上面的猜想。
那请同学们继续观察,3的倍数的个位可以是哪些数字?
要判断一个数是不是3的倍数,能不能只看个位?(不能)
究竟什么样的数才是3的倍数呢?这节课我们就来研究3的倍数的特征。(板书课题)
【设计意图:同学们看到自己捐款的照片和过程出现在新闻报道中,顿时会情绪高涨起来。这不仅能让学生们的感情再次升华,更能让学生们感知到数学就在我们身边。】
二、活动体验,探究新知
1.自主生成,体验交流
我猜每个同学都有自己的幸运数字,如果把你们小组内的幸运数字凑在一起,都会组成哪些数呢?
小组合作要求:让学生先写出能组成的数(两位数、三位数或四位数都可以),并判断每个数是否是3的倍数,再写出自己组的发现。(具体内容略)
学生合作探索,教师巡视参与。
谁来代表你们小组汇报研究的情况?
你能把刚才同学们交流的数进行分类吗?说明你分类的理由。
同学们的思维可真开阔呀,想出了那么多分类的方法,真不简单!今天,让我们先走进3的倍数中去,看看它们蕴藏了什么样的数学的奥秘?
(在实物投影上展示)几组前面小组合作中自主生成的3的倍数。
小组讨论,教师巡视参与。
一、教学目标设置:
依据一:《课程标准》
1、总体和学段目标中的描述:
(1)体验从具体情境中抽象出数的过程,掌握必要的运算技能。
(2)初步学会与他人合作解决问题,尝试解释自己的思考过程。
2.内容目标中的描述:
掌握因数和倍数、质数和合数、奇数和偶数等概念,以及2、3、5的倍数的特征.
依据二:《教师教学用书》中的单元目标的具体描述。
使学生通过主探索,掌握2,5,3的倍数的特征。
依据三:教材和学情
教材分析:
教材把课题确定为“探索活动”,其目的就是要让学生经历探索知识的过程。教材首先提出“我们研究了2、5倍数的特征,那么,3的倍数有什么特征”的问题,目的是引导学生思考和探索3的倍数的特征。教材提供了一张100以内的数目表,引导学生发现3的倍数特征。学生在探索过程中,发现3的倍数特征与2和5的倍数特征的不同,2、5的倍数特征主要观察数的个位,而3的倍数特征要观察各个数位数字的和是否是3的倍数。从而发现个位和十位都没有什么规律,而要找到各个数位上的和有什么规律。在初步得出结论的基础上,教师应进一步提出“这个规律对三位数是否成立”的问题,促使学生能自己造出更大的数来验证规律。需要注意的是在日常的练*与评价时,一般只要求学生判断100以内的数是否是3的倍数。因此,本课着重引导学生找到和发现着重点,从而归纳概括了3的倍数的特征。
学情分析:
学生在学*本课之前,已经学*了2和5的倍数的特征,养成善于动脑思考、讨论、交流与研究,积极进行小组合作的*惯。可以说,学生有了一定的自学与研究的能力。
学生容易从末尾数字进行判断这个数是否是3的倍数。所以,在教学本课时,让学生通过观察、思考、分析、归纳等活动,让他们真正理解、掌握、判断3的倍数的方法。
鉴于以上分析,本节课教学重难点:
经历3的倍数的特征的探索过程,掌握3的倍数特征。
教学目标:
1.通过观察、小组交流等活动,经历探索3的倍数的特征的过程,掌握3的倍数的特征,会判断一个数是不是3的倍数。
2.培养发展学生分析、观察、比较、操作、概括、猜测、验证、归纳的能力。
3.学生通过探索与亲身参与实践活动,并能在活动中获得成功情感的体验。
二、教学评价的设计:
1、在小组内说一说3的倍数的特征。
2、对同学板演情况进行正确判断,并能独立完成课堂练*题。
三、教学过程:
一、生活激趣,导入新知
1、新闻导入:1月28日讯,郑州市实验小学多功能大厅内掀起了一场爱心捐款的热潮。学生们以班为单位,老师们以级部为单位纷纷走到捐款箱前,把一颗颗滚烫的爱心、一句句殷切的祝福,献给该校五年级七班一名身患再生障碍性贫血的同学张森。活动场面热烈,真情感人,整个大厅内爱心涌动,给人无限的温暖。本次活动全校师生共捐款85332元,用于张森同学的检查和治疗。
此次爱心捐助活动,充分体现了实验小学师生团结互助的高尚情操和关爱帮助困难学生的人文精神,践行了“一方有难,八方支援”的传统美德。广大师生纷纷表示,希望张森同学在全体师生的关心支持下坚强地战胜疾病,早日康复,重返实验小学温暖的大家庭!
2、让学生分别判断85332是不是2、5的倍数,并说明理由。
结合学生的回答,板书:2、5的倍数看个位。
如果将这些钱*均支付3次张森同学的手术费,不计算能判断每次手术费得到的钱数是不是整元数吗?
你猜想什么样的数是3的倍数?
同意他的猜想吗?(同意)
他的猜想对不对呢?我们来继续研究。
出示1~99的数表,让学生找出3的倍数。
思考一下这位同学的猜想是否正确?
学生从不同角度举例否定上面的猜想。
那请同学们继续观察,3的倍数的个位可以是哪些数字?
要判断一个数是不是3的倍数,能不能只看个位?(不能)
究竟什么样的数才是3的倍数呢?这节课我们就来研究3的倍数的特征。(板书课题)
【设计意图:同学们看到自己捐款的照片和过程出现在新闻报道中,顿时会情绪高涨起来。这不仅能让学生们的感情再次升华,更能让学生们感知到数学就在我们身边。】
二、活动体验,探究新知
1.自主生成,体验交流
我猜每个同学都有自己的幸运数字,如果把你们小组内的幸运数字凑在一起,都会组成哪些数呢?
小组合作要求:让学生先写出能组成的数(两位数、三位数或四位数都可以),并判断每个数是否是3的倍数,再写出自己组的发现。(具体内容略)
学生合作探索,教师巡视参与。
谁来代表你们小组汇报研究的情况?
你能把刚才同学们交流的数进行分类吗?说明你分类的理由。
同学们的思维可真开阔呀,想出了那么多分类的方法,真不简单!今天,让我们先走进3的倍数中去,看看它们蕴藏了什么样的数学的奥秘?
(在实物投影上展示)几组前面小组合作中自主生成的3的倍数。
小组讨论,教师巡视参与。
教学内容:3的倍数的特征(P19及P20题4~5)
教学目标:
① 使学生通过操作自己发现3的倍数的特征,并归纳出3的倍数的特征。
② 能应用3的倍数的特征,会判断一个数是否是3的倍数。
③ 培养学生观察、分析、概括、推理能力。
④ 让学生在探索发现过程中体验到成功的乐趣,培养学*数学的信心。
教学重点:探求3的倍数的特征。
教学难点:会判断一个数是否是3的倍数。
教学过程:
一、课前预*:
自学内容 P19 做一做,P20的T4-11
1、判断下面哪些数是2的倍数,哪些数是5的倍数?
18,25,46,85,100,325,180,90
2、说一说2、5的倍数它们有什么特征呢?
3、既是2的倍数又是5的倍数的数有什么特征?
4、你们猜一猜3的倍数有什么特征呢?
尝试练*
1、试着完成P19的做一做练*
2、判断下列数哪些是3的倍数?
33 34 27 180
69 390 405 300
二、汇报展示:
同学们,你们只要随便说一个数,我就能很快说出它是不是3的倍数,你们相信不?
1、学生猜想:
(1)个位是3、6、9的数是3的倍数;
(2)个位是2、5的数是3的倍数;
(3)个位是1、2、3、5、6、8、9的数是3的倍数;
(4)个位是0-9的数是3的倍数
……
2.验证猜想。反馈3的倍数的特征。
(1)思考并回答
①什么样的数是3的倍数?
②要想研究3的倍数的特征,应该怎样做?
(2)学生反馈:(根据学生说的逐一板书,先找出一些3的倍数)
1×3=3 5×3=15
2×3=6 6×3=18
3×3=9 7×3=21
4×3=128×3=24
(3)观察:3的倍数的各位数字又什么特征?它是不是3的倍数?其它位数又什么特征?
(4)提问:如果老师讲这些3的倍数的各位数字和十位数字调换,它还是3的倍数吗?
我们发现:调换位置后还是3的倍数,那么3的倍数有什么奥妙呢?(分组讨论,汇报)
得出结论:如果把3的倍数的各位上的数字相加,他们的和是3的倍数。
验证:下面各数,哪些是3的倍数呢?
210,54,216,129,9231,9876543204
(5)小结:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
2.练*:完成P19做一做
三、反馈检测:
1完成P20题4~5
2(1)在□里填上适当的数,使它是3的倍数
3□5□1646□400□
(2)在□里填上适当的数,使它成为偶数,并且是3的倍数。
《3的倍数的特征》是学生在学*过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。
1、找准知识冲突激发探索愿望。
找准备知识中冲纷激发探索,在第一环节中我先让学生复*2.5的倍数特征并对一些数据做出了判断而后我们“谁来猜测一下3的倍数特征”激发学生探究的愿望。由于学生刚刚复*了2.5倍数的特征,知道只要看一个数的个位,因此在学*3的倍数特征时,自然会把“看个位”这一方法迁移过来。但实际上,却不是这样,于是新旧知识间的矛盾冲突使学生产生了困惑,有了新旧知识的矛盾冲突,就能激发起学生探究的愿望,这样不反有利于学生对新知识的掌握,有效的将新知识纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。
2、激发学*中的困惑,让探究走向深入。
找准知识之间的冲突并巧妙激发出来,这是一节课的出彩之处,而我从孩子们的学号为入重点,让孩子们判断自己的学号是否是3的倍数,并再次探究3的倍数特征,并且发现3的倍数和数字排列顺序的有关系。但和这个数的个位上的数字有关。使之所探究的问题是渐渐完整而清晰,而后我又组织孩子们用摆小棒的方法来探究和验证,这种层层递进环环相扣的方法,促使探究活动走向深入,让学生获得更大的发展。
3、课后反思使之完美。
这节课结束后,我感觉最大的缺憾之处,最后点选了的倍数特征时,应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。而老练*题方面,也应形式面多样化,如用卡片练*判断,或通过打手势的方法或先听老师——这样效率更高,课堂氛围好,课堂不是同步,学生的发展始终是教学的落脚点。我们的教学应着眼于学生对解决问题方法的感悟,这样才可获得可持续发展的动力。
探究2的倍数的特征时,我没有采用书本上画圈的方法,而是让学生依次写出100以内2的倍数,并且要求学生思考:怎样写才能看上去更有规律。结果,大部分学生都听节约的,密密麻麻地写了几行,只有3位同学每行写10个,而且上下依次对齐。接着让学生观察这些数的特征,一些同学说出了无关紧要的,我又提示学生观察个位上的数,发现都是0、2、4、6、8,于是就得出2的倍数的特征;对于5的倍数的特征,就简单了许多,在刚才这些2的倍数中留下5的倍数,然后在补充各位是5的数,从而学生利用刚学的知识进行迁移,得出规律。
整堂的教学还是比较顺利的,但是“想想做做”没有来得及在课上全部完成,课后想了以下,写100以内2和5的倍数应该让学生在预*的时候就完成,这样可以节省新授的时间,就能即使得到巩固练*了。
《2、5的倍数的特征》是学生在四年级拓展*台上认识了因数和倍数关系和概念后的基础上进一步研究倍数的一节课,由于时间已经很长了,学生肯定也有了遗忘,所以课的开始,我觉的通过创设密码来进行反复是很有必要的。
在这节课中我想掌握5的倍数的特征不是本节课的唯一目标,所以在制定目标的时候,应从数学研究方法着手,在学生掌握知识的'同时,注重让学生了解科学的数学研究的过程。引导学生通过“猜想——验证——结论”三个流程进行研究,最后得到正确的数学结论,并进行应用。
在整个教学过程中我努力从以下四个方面来感受数学的研究方法:
1、感受范围意识。
当时我是这样引导的:2的倍数有哪些?学生说:有2、4、6、8、10都是双数,有无数个?我接着问:既然有无数个,能不能全找出来?学生说:不能全部找出来,接着我又问:5的倍数能不能全找出来。学生说:也不能全找出来。“既然它们的倍数都找不全哪怎么去研究?我把这个问题抛给学生去解决,接着就有学生说:可以选择一个范围来研究。
这样学生就有了“小范围”的意识,在数据比较多的时候,我们可以先确定一个范围,在有限的时间里研究这个范围中的数的特征,当得到在1-100这个范围内5的倍数的特征的时候。接着我又引导学生认识到这个结论仅仅适用于1-100这个小范围,是不是在所有自然数中都使用?还需要验证。在这样引导下,学生开始认识到还要继续拓展范围,研究大于100的自然数中所有5的倍数特征,通过共同的验证,最后得到正确的结论。
在这一过程中,学生感受到了科学严谨的态度,同时有了一定的“范围”意识,知道了在进行一项数目巨大的研究过程中,可以从小范围入手,得到一定的猜想,然后逐渐扩大范围,最后得出科学的结论。
2、感受“猜想”与“结论”的不同。
教学中,当学生找到百数表内5的倍数特征时,我追问学生,“是不是在所有的自然数中,5的倍数都有这个特征呢?”学生异口同声地都认为是。这里就需要教师帮助学生养成严谨科学的学*态度。我告诉学生是不是有这个特征,我们没有研究过,只是我们的猜想。还需要我们进一步去验证。大部分学生还是比较认可的。没有经过研究,怎么能知道是呢?有了这样的猜想,最后通过举例的方法验证后,学生没有找到反例,这时我才告诉学生,一开始的猜想现在变成了结论。虽然同样是一句话,不同的时候有不同的界定,没有经过验证前,只是猜想;只有验证后,猜想才可能变成结论。
相信学生不断经历这种过程后,他们才会具备科学的态度,才会学会对自己所说的话负责,才不会贸然下结论。
3、感受学*两种“验证”方法。
验证的方法有很多种,举例法、不完全归纳法,推理法等等。根据孩子的特点,我认为最适合小学生的方法便是让他们学会举例的方法。这节课中,当学生 发现百数表中,5的倍数特征后,我引导学生在所有的自然数中是不是5的倍数都有这个特征?怎样去验证呢?在这里我预设的是学生可能会说出可以找一些个位上是5或0的数用除法来验证。但学生并没有出来,他们说的是用乘法来验证。于是我接着学生的想法,在这里引出了推理的方法,(但是在备课预设时我并没有想要引出推理)所以讲解的并不到位,这是我需要反思的。于是我又引导可以用举例的方法用除法来验证,寻找有没有不符合这一特征的例子,全班举了很多例子,进行了验证。最后得出结论。
4、感受经历完整的研究过程。
这节课中,当学生研究出5的倍数的特征后,我引导学生来回忆。我们是怎样来研究5的倍数的特征的?让学生体验经历“先确定研究范围——选择研究方法——发现——验证——结论”这一研究过程。然后在让学生独立去研究2的倍数的特征。再次体验2的倍数的特征研究过程,我想学生就有了更完整的体验。
课的最后部分:我设计了自我小结一个环节,目的是让学生通过对知识的梳理有一个系统的掌握。
根据《数学课程标准》(20xx版)中所提出的“教师应当根据课程内容,设计运用数学知识解决问题的活动。这样的活动应体现‘问题情境—建立模型—求解验证’过程,这个过程要有利于理解和掌握相关的知识技能,感悟数学思想、积累活动经验;要有利于提高发现和提出问题的能力、分析和解决问题的能力,增强应用意识和创新意识”。从这一段的描述中我们可以看出,建立模型是数*用和解决问题的核心。
本节课,我首先设计问题情境,六一儿童节节目交谊舞、圆圈舞叠罗汉舞选人数,学生发现人数必须是2、5、3的倍数,激发探究欲望。再结合导学案,学生观察交流发现5的倍数只要是个位是0或5,从而在心中形成一定的模型,数的倍数的特征首先应看个位。通过验证,发现个位是0、2、4、6、8的数都是2的倍数。新知的形成自然而然。另外,本节里,总结出的2和5的倍数的特征本身也是一个数学模型。学生利用模型,认识奇数偶数、解决日常生活中的有关问题。
其实,每堂数学课均可以形成一个核心的数学模型。数学模型在小学数学课堂上就是师生进行探究的结果,是一种数学知识;数学模型在小学数学阶段是由师生在课堂上构建出的数学认知结构。因而教师在进行教学设计时要认真思考建模是建立一个什么数学模型。课堂上构建出一个简洁、清晰、应用性强的数学模型,会让学生切切实实感受到数学的简洁美。作为一线教师,理清数学模型在教学中的地位与作用,切实研究好每堂课中所应建立的数学模型,才能有效的设计好整个建模过程,让学生真切的体验数学的魅力。
这节课新授知识较为简单,很适合让学生预*。所以课前我印制了百数表让学生圈出5的倍数和2的倍数,并设计了两个问题:1、观察5的倍数,想想这些数有什么特征?2、观察2的倍数,又有什么特征呢?一上课就小组交流这两个问题,同学们兴致高涨,足以看出预*效果是很好的。通过这样的教学,节省了很多时间,课堂作业可以当堂完成。从作业情况来看,大部分同学做得还不错。一小部分同*用知识的能力欠佳,比如:写出5个奇数是这样写的:5、15、25、35、45.虽然这样写不能算错,但是这些学生可能对5的倍数与奇数的概念有些混淆。
在0、1、5、8,四张卡片中选出两张数字卡片,按要求组成两位数。
1、组成的数是偶数的有( )
2、组成的数是5的倍数的有( )
3、组成的数既是2的倍数、又是5的倍数的有( )。
这道题部分同学答案不全,想想还是正常的,其实这道题对于中等以下的学生来说确实有难度的。
1.教材地位及作用
《3的倍数特征》一课主要是让学生理解3的倍数特征,能判断一个数是不是3的倍数。本节课是在学*了倍数与因数及2、5的倍数特征的基础上来进行本节课的教学的。本节课主要让学生在猜想中,通过动手圈画百以内的数表,在观察、分析、比较、验证的过程中发现规律。本节课的教学是以后学*公倍数与公因数、约分、通分、分数四则运算等知识的重要基础,这样有利于学生感受数学知识之间的联系,体会前后知识学*的必要性。同时,也发展了学生的数感。
2.教学目标
[1] 经历探索3的倍数的特征的过程,理解3的倍数的特征,能判断一个数是不是3的倍数。
[2] 让学生猜测、验证3的倍数的特征。并在活动中能够积极思考,发表自己的观点,提出问题,解决问题。
[3] 让学生在活动中感受学*数学的兴趣,发展学生分析、比较、猜测、验证的能力。
3.教学重点、难点
理解3的倍数的特征;发现3的倍数的特征的这一规律。
[学情分析]
学生已经掌握了2、5的倍数特征,他们会利用2、5的倍数特征进行迁移来寻找3的倍数的特征,由此产生认知冲突,激发了学生想要探究的愿望,学生会在观察、比较、分析及教师的指导、验证中得出新的结论,体验成功的喜悦。
[教学策略]
1.以学生原有认知为基础,激发学生的探究欲望。利用学生刚学完“2、5的倍数特征”产生的负迁移,直接抛出问题,激活学生的原有认知,学生自然而然将2、5的倍数特征迁移到3的倍数特征的问题中来,由此产生认知冲突,萌发疑问,激发强烈的探究欲望。学生很快进入了问题情境,猜测、否定、反思、观察、讨论,学生会渐渐进入探究者的角色。
2.以问题为中心组织学生展开探究活动。突出学生的主体地位,依据学生的年龄特点和认知水*设计具有探索性的问题,引导学生紧紧围绕“3的倍数有什么特征”这个问题来开展学*活动,指导学生围绕问题展开探究活动,组织师生之间、生生之间的交流和讨论,逐步发现、归纳规律,得出结论,培养学生的探索意识和分析、概括、验证、判断等能力。
[教学过程]
一、从原有认知出发,激发学生求知欲。
师:同学们,我们已经知道了2、5的倍数的特征,那么3的倍数又会有什么特征呢?谁能来猜测一下?
生1:个位上是3、6、9的数是3的倍数。比如33、66、99。
生2:反对,个位上是3、6、9的数不一定是3的倍数,比如13、16、19就不是3的倍数。
生3:个位上是0、1、2、3、……9 的数有的是3的倍数,有的不是3的倍数。
师:看来只观察个位不能确定是不是3的倍数,那么3的倍数有什么特征呢今天我们就来共同研究。
二、观察比较、得出结论。
(1)师:在百以内的数表中圈出3的倍数。
(2)组织学生观察、交流,并呈现已圈出3的倍数的百以内的数表。
师:请观察这个表格,你发现3的倍数有什么特征?把你的发现与同桌交流一下。学生交流后组织全班交流。
生1:我发现10以内的数只有3、6、9是3的倍数。
生2:我发现不管横着看还是竖着看,3的倍数都是隔两个数一出现。
生3:我全部看了一下,刚才前面那位同学的猜想是不对的,3的倍数个位上是0-9这10个数字都有可能。
师:个位上的数字没有什么规律,那十位上的数字有什么规律吗?
生:没有什么规律,1至9这些数字都出现了。
师:其他同学还有什么发现吗?
生:我发现3的倍数按一条一条斜线排列,很有规律。
师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?
生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。
师:十位数加1,个位数减1组成的数与原来的数有什么相同的地方?
生:我发现3所在的那条斜线,另外两个数12和21的十位与个位上的数字加起来都等于3。
师:这是一个重大发现,其它斜线呢?
生1:我发现6所在的那条斜线上的数,两个数字加起来的和都等于6。
生2:9所在的那条斜线上的数,两个数字加起来的和等于9。
生3:我发现另外几列,边上的30,60,90两个数字的和是3,6,9,另外的数两个数字的和是12,15,18。
师:现在谁能归纳一下3的倍数有什么特征呢?
生:一个数各个数位上数字之和等于3,6,9,12,15,18等,这个数就一定是3的倍数。
师:实际上3,6,9,12,15,18等数都是3的倍数,所以这句话还可以怎么说?
生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。
(3)师:刚才是从100以内的数中发现了规律,得出了3的倍数的特征。如果是3位数甚至是更大的数,3的倍数的特征是否也相同呢?请大家找几个数来验证一下。
(4)生自己写数并验证,然后交流,得出了同样的结论。
三、巩固应用,深化提高
1.圈出3的倍数
75、43、655、888、7431、5916、4012
2、在□内填上一个数字,使这个数是3的倍数,你有几种方法?
127□ □3□ 11□2
四、小结反思
《2、5的倍数的特征》是学生在四年级拓展*台上认识了因数和倍数关系和概念后的基础上进一步研究倍数的一节课,由于时间已经很长了,学生肯定也有了遗忘,所以课的开始,我觉的通过创设密码来进行反复是很有必要的。
在这节课中我想掌握5的倍数的特征不是本节课的唯一目标,所以在制定目标的时候,应从数学研究方法着手,在学生掌握知识的同时,注重让学生了解科学的数学研究的过程。引导学生通过“猜想——验证——结论”三个流程进行研究,最后得到正确的数学结论,并进行应用。
在整个教学过程中我努力从以下四个方面来感受数学的研究方法:
1、感受范围意识。
当时我是这样引导的:2的倍数有哪些?学生说:有2、4、6、8、10都是双数,有无数个?我接着问:既然有无数个,能不能全找出来?学生说:不能全部找出来,接着我又问:5的倍数能不能全找出来。学生说:也不能全找出来。“既然它们的倍数都找不全哪怎么去研究?我把这个问题抛给学生去解决,接着就有学生说:可以选择一个范围来研究。
这样学生就有了“小范围”的意识,在数据比较多的时候,我们可以先确定一个范围,在有限的时间里研究这个范围中的数的特征,当得到在1-100这个范围内5的倍数的特征的时候。接着我又引导学生认识到这个结论仅仅适用于1-100这个小范围,是不是在所有自然数中都使用?还需要验证。在这样引导下,学生开始认识到还要继续拓展范围,研究大于100的自然数中所有5的倍数特征,通过共同的验证,最后得到正确的结论。
在这一过程中,学生感受到了科学严谨的态度,同时有了一定的“范围”意识,知道了在进行一项数目巨大的研究过程中,可以从小范围入手,得到一定的猜想,然后逐渐扩大范围,最后得出科学的结论。
2、感受“猜想”与“结论”的不同。
教学中,当学生找到百数表内5的倍数特征时,我追问学生,“是不是在所有的自然数中,5的倍数都有这个特征呢?”学生异口同声地都认为是。这里就需要教师帮助学生养成严谨科学的学*态度。我告诉学生是不是有这个特征,我们没有研究过,只是我们的猜想。还需要我们进一步去验证。大部分学生还是比较认可的。没有经过研究,怎么能知道是呢?有了这样的猜想,最后通过举例的方法验证后,学生没有找到反例,这时我才告诉学生,一开始的猜想现在变成了结论。虽然同样是一句话,不同的时候有不同的界定,没有经过验证前,只是猜想;只有验证后,猜想才可能变成结论。
相信学生不断经历这种过程后,他们才会具备科学的态度,才会学会对自己所说的话负责,才不会贸然下结论。
3、感受学*两种“验证”方法。
验证的方法有很多种,举例法、不完全归纳法,推理法等等。根据孩子的特点,我认为最适合小学生的方法便是让他们学会举例的方法。这节课中,当学生 发现百数表中,5的倍数特征后,我引导学生在所有的自然数中是不是5的倍数都有这个特征?怎样去验证呢?在这里我预设的是学生可能会说出可以找一些个位上是5或0的数用除法来验证。但学生并没有出来,他们说的是用乘法来验证。于是我接着学生的想法,在这里引出了推理的方法,(但是在备课预设时我并没有想要引出推理)所以讲解的并不到位,这是我需要反思的。于是我又引导可以用举例的方法用除法来验证,寻找有没有不符合这一特征的例子,全班举了很多例子,进行了验证。最后得出结论。
4、感受经历完整的研究过程。
这节课中,当学生研究出5的倍数的特征后,我引导学生来回忆。我们是怎样来研究5的倍数的特征的?让学生体验经历“先确定研究范围——选择研究方法——发现——验证——结论”这一研究过程。然后在让学生独立去研究2的倍数的特征。再次体验2的倍数的特征研究过程,我想学生就有了更完整的体验。
课的最后部分:我设计了自我小结一个环节,目的是让学生通过对知识的梳理有一个系统的掌握。
本节课的学*设计从学生已有的知识经验出发,创设有助于学生自主学*、合作交流的情境,使学生经历观察、归纳、类比、猜想、交流、验证、反思等数学活动,获得基本的数学知识和技能,发展思维能力,激发学*的兴趣,增强学好数学的信心。
正确的教学观念,恰当的教学设计,使课堂生动活泼,成效显著。主要体现了以下几个优点:
一、以人为本,尊重学生,真正把学生放到学*的主体地位中
“兴趣是学*的最好动力。”学生始终保持着昂扬的学*兴趣和斗志。教师也真正做到了以人为本,尊重学生的个性发展。这就是本节课最大的成功。
二、细节讲究珠圆玉润、相得益彰
每个细节都能从整体上加以考虑,能做到衔接得体自然。例如:奇偶数组成整个自然数,在百数表中以及在辨别奇偶数以后都有提问并进行强化。又如:在学*既是2的倍数又是5的倍数这个环节,采用先找出2的倍数,再找5的倍数的方法,然后动态展示集合圈的交集既是2的倍数又是5的倍数,在不揭示“公倍数”这一概念的学*要求下,让学感知“公倍数”这一特点,为下一步学*打下良好的基础。
三、各个环节的处理详略得当、环环相扣
注重细节,但并不处处皆是面面俱到。各个环节处理既有详,又有略,环节之间还能够水到渠成,环环相扣,体现出知识之间的.生成。每个环节不会显得突兀,给人一种浑然一起的感觉;每个环节之间又有相应的重点内容,显得比较紧凑,缺一不可。
本节课有以下不足之处:
一、课件用绿色代表偶数,偶数变绿色时,颜色太淡,后排看不清楚。
二、时间分配还有点欠妥,开始进入课题时间稍微长点,消耗学*时间。
三、教师语言还应该进一步简洁。
这节课新授知识较为简单,很适合让学生预*。所以课前我印制了百数表让学生圈出5的倍数和2的倍数,并设计了两个问题:
1、观察5的倍数,想想这些数有什么特征?
2、观察2的倍数,又有什么特征呢?
一上课就小组交流这两个问题,同学们兴致高涨,足以看出预*效果是很好的。通过这样的教学,节省了很多时间,课堂作业可以当堂完成。从作业情况来看,大部分同学做得还不错。一小部分同*用知识的能力欠佳,
比如:写出5个奇数是这样写的:5、15、25、35、45。虽然这样写不能算错,但是这些学生可能对5的倍数与奇数的概念有些混淆。在0、1、5、8,四张卡片中选出两张数字卡片,按要求组成两位数。
(1)组成的数是偶数的有()
(2)组成的数是5的倍数的有()
(3)组成的数既是2的倍数、又是5的'倍数的有()。
这道题部分同学答案不全,想想还是正常的,其实这道题对于中等以下的学生来说确实有难度的。
《3的倍数的特征》是五年级下册数学第二单元“因数与倍数”中的一个知识点,是在学生已经认识倍数和因数、2和5倍数的特征的基础上进行教学的。由于2.5的倍数的特征从数的表面的特点就可以很容易看出——根据个位数的特点就可以判断出来。但是3的倍数的特征却不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。
因而在《3的倍数的特征》的开始,我先复*了2.5的倍数的特征,然后学生猜一猜什么样的数是3的倍数,学生自然而然地会将“2.5的倍数的特征”迁移到“3的倍数特征的问题中,得出:个位上是3、6、9的数是3的倍数,后被学生补充到“个位上是0—9的任何一个数字都有可能是3的倍数,”其特征不明显,也就是说3的倍数和一个数的个位数没有关系,因此要从另外的角度来观察和思考。在问题情境中让学生产生认知冲突产生疑问,激发强烈的探究欲望。接着提供给每位学生一张百数表,让他们圈出所有3的倍数,抛出问题:把3的倍数的各位上的数相加,看看你有什么发现,引导学生换角度思考3的倍数特征。接下来,经过进一步提示,引导学生观察各位上数的和,发现各位上的和是3的倍数。于是,形成新的猜想:一个数如果是3的倍数,那么它各位上数的和也是3的倍数。
为了验证这一猜想,我补充了一些其他的数,如49×3=147,166×3=498等,使学生进一步确认这一结论的正确性。还可以任意写一个数,利用这一结论来验证,如3697,3+6+9+7=25,25不是3的倍数,而3697÷3也不能得到整数商,因此,它不是3的倍数。通过这样的方式也使学生认识到:找出某个规律后,还要找出一些正面的、反面的例子进行检验,看是不是普遍适用。
为了使学生更好地掌握3的倍数的特征,进行课堂练*时,我还把一些数各个数位上的数经过不同的排列,再让学生判断,以加深对“各位上数的和是3的倍数”的理解。如完成“做一做”第1题时,学生判断完45是3的倍数后,教师可以再让学生判断一下54是不是3的倍数。
利用2、5、3的倍数的特征来判断一个数是不是2、5或3的倍数,其方法是比较容易掌握的,但要形成较好的数感,达到熟练判断的程度,也不是一、两节课所能解决的,还需要进行较多的练*进行巩固。
这节课结束后,我感到自主学*和合作探究是这节课中最重要的两种学*方式,学生通过自主选择研究内容,举例验证等独立思考和小组讨论,相互质疑等合作探究活动,获得了数学知识。学生的学*能动性和潜在能力得到了激发。在自主探索的过程中,学生体验到了学*成功的愉悦,同时也促进了自身的发展。但最大的缺憾之处,最后总结3的倍数特征时,应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。而练*题方面,也应形式面多样化。
3的倍数的特征的教学与2.5倍数的特征难度上有不同,因为2.5的倍数的特征从数的表面的特点就可以很容易看出(根据个位数的特点就可以判断出来),但是3的倍数的特征却不能从表面去判断,因而我特设以下环节突破重难点预*题。
1、给出一些数让学生先判断哪些数是3的倍数。并让学生说一说你是怎么判断的?
2、从以上的3的倍数进行思考:
(1)、3的倍数与它个位上的数有关系吗?
(2)、 3的倍数的各位上的数的和都是3的倍数吗?
新课时让学生从上面的练*中去发现了什么,从而归纳3的倍数的特征:一个数的各个数位上的数字和是3的倍数,这个数就是3的倍数
然后再让每个同学任意写一个3的倍数,再看看这个数的各个数位上的数的和是不是3的倍数。要求学生说出方法和思路。
经过以上这些活动后学生都能对一个数是不是3的倍数进行简单的判断。特别是学生对3的倍数特征的判断大多数的学生能先求出各个数位的数字之和是不是3的倍数,然后再进行判断,效果很好。
1.找准知识间的冲突,激发探究的愿望。
学生刚刚学*了2、5的倍数的特征,知道只要看一个数的个位,因此在学*3的倍数的特征时,自然会把“看个位”这一方法迁移过来。而实际上,3的倍数的特征,却要把各个位上的数加起来研究。于是新旧知识之间的矛盾冲突使学生产生了困惑,“为什么2或5的倍数只看个位?”“为什么3的倍数要把各个位上的数加起来研究?”……学生急于想了解这些为什么,便会自觉地进入到自主探究的状态之中。知识不是孤立的,新旧知识有时会存在矛盾冲突,教师如能找准知识间的冲突并巧妙激发出来,就能激起学生探究的愿望。这样不仅有利于学生对新知的掌握,有效地将新知纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。
2.激活学*中的困惑,让探究走向深入。
创造和发现往往是由惊讶和困惑开始。对比两次教学,第一次教学由于忽视了学*中的困惑,学生对于3的倍数的特征理解并不透彻,探索的体验也并不深刻。第二次教学留给学生质疑的时空,巧设冲突,让学生进行新旧知识的对比,将困惑激发出来,通过学生间相互启发、相互质疑,对问题的思考渐渐完整而清晰。学生不但经历由困惑到明了的过程,而且思维不断走向深入,获得了更有价值的发现,探究能力也得到切实提高。学生在学*中难免会产生困惑,这种困惑有时是学生希望理解更全面、更深刻的表现。面对这些有价值的思考,我们要有敏锐的洞察力,采取恰当的方法将其激活,促使探究活动走向深入,让学生获得更大的发展。当然,学生在学*中可能产生怎样的困惑,面对这一困惑又该如何恰当引导,尚需要教师课前精心预设。
3.沟通知识间的联系,让学生不断探究。
显然,2、5的倍数的特征与3的倍数的特征是相互联系的,其研究方法是相通的(都可以通过“拆数”进行观察),特征的本质也是相同的。这种研究方法和特征本质的及时沟通,激发了学生继续研究4、7、9……的倍数的特征的好奇心,促使学生不断探究,将学*由课内延伸到课外,并在探究过程中建构起对数的倍数特征的整体认识,感悟数学其实就是以一驭万,以简驭繁。课堂不是句号,学生的发展始终是教学的落脚点。我们的教学绝不能仅仅局限于学生对于一堂课知识的掌握,而应着眼于学生对于解决问题方法的感悟,获得可持续发展的动力。
《2、5、3倍数的'特征练*课》是一堂练*课,本节课是在学生已经学*了2,5,3倍数的特征的基础上进行教学的。为以后学*分数,特别是约分、通分,需要以因数倍数的知识的概念为基础,到进一步掌握公因数、最大公因数和公倍数、最小公倍数的概念,需要用到质数、合数的概念,而最基础的就是掌握2,5,3的倍数的特征。从开始学*2,5的倍数特征仅仅体现在个位数上,到学*3的倍数特征时从只看个位转向考察各位上的数相加的和,学生已经有了思路上的转变,思维的转折,观察角度的改变,以此让学生自主探索4的倍数特征,但由于与2,5,3的倍数特征又有些许不同,对学生依然有一定难度。
如果只是单一的做*题,势必有学生会感到枯燥无味,这样子学生的学*效果难以保障,对教师的功底与教学策略有很大的挑战。因此课堂伊始,我直接开门见山式的先对前面学*的知识进行复*梳理,接着利用学生感兴趣也是正在使用着的工具——“手机”的锁屏密码为线索,通过提示让学生解密码的方式激发学生的学*兴趣,然后以破解后的密码1080,导出本节课我们要重点探究的4的倍数特征。让学生带着趣味,自主的去探索。由于有了前面探索2,5,3倍数特征的基础在,所以在探索4的倍数特征时放手让学生通过操作,观察,思考从而有所发现,体验探索的乐趣。接着通过计数器,让学生明白判断4的倍数特征背后的原理。最后在练*巩固中,逐渐熟练应用所学知识,感知数学知识和我们的生活紧密联系。如何让练*课不仅仅只是做练*,让学生能在练*中获得对知识的理解以及思维上实质的提升,仍然值得我在好好的去思考探索。
《3的倍数的特征》看似一节知识简单的课,但从教学实际来看,是我想得过于简单了,教师注重的不应该仅仅是对知识的掌握,更应该使学生站在跳板上学*数学,关注数学思维的发展 。
“3的倍数的特征”属于数论的范畴,离学生的生活较远,有一定的难度。而2、5的倍数的特征是学生学*这一课的基础。所以,在教学“3的倍数的特征”时,我首先以学生原有认知为基础,激发学生的探究欲望,利用学生刚学完“2、5的倍数的特征”产生的负迁移,直接抛出问题,激活了学生的原有认知,学生自然而然地会将“2、5的倍数的特征”迁移到“3的倍数的特征”的问题中,由此产生认知冲突,萌发疑问,激发强烈的探究欲望,因此学生很快进入问题情境,猜测、否定、反思、观察、讨论,使得大部分学生渐渐进入了探究者的角色。但针对这样的环节,也有老师提出反对意见,他们认为教师在教学中不仅要注重知识的正迁移,还要防止负迁移的产生,要能正确地预见学生学*中可能出现的错误,采取适当措施,防患于未然,达到所谓“防微杜渐”的目的;他们满足于学生的一路凯歌,陶醉于学生的尽善尽美,视学生的差错为洪水猛兽。但是课堂就是学生出错的地方,出错是学生的权利,学生的错误是劳动的成果,关键是要看我们教师如何看待学生的错误,有个教育专家说得好:“课堂上的错误是教学的巨大财富”。正式因为如此,我们的新课堂也呼唤“自主、合作、探究”,而真探究必然伴随大量差错的生成,学生总会出现各种各样的错误,我们的课堂教学不应该有意识地去避免学生犯错误。因此,我们教师在课堂中要有沉着冷静的心理、海纳百川的境界和从容应变的机智,给学生一个出错的机会和权利。
其次,看一个数是不是2、5的倍数,只需看这个数的个位。个位是0、2、4、6、8的数就是2的倍数,个位是0、5的数就是5的倍数。而3的倍数特征则不然,一个数是不是3的倍数,不能只看个位,而要看它所有所有数位上的数的和是不是3的倍数。在教学中,我和大多数的教师一样,更多的是关注两者的不同,注重让学生对两种特征进行区分,因此,教学中往往刻意对比强化,凸显这种差异。但这样的处理很明显在数论的角度上割裂了两者的共同点。实际上教师在引导学生发现3的倍数的独特特征的同时,也应该注意引导学生归纳2、3、5倍数特征的共同点。别小看这寥寥数言的引导,实质它蕴藏着深意。因为从数论角度讲一个数能否被2、3、5乃至被其它数整除,其研究的理论基础是一样的:即如果各个数位上的数被某数除,所得的余数的和能够被某数整除,那么这个数也一定能被某数整除。当然,小学生由于知识和思维特点的限制,还不可能从数论的高度去建构与理解。但是,这并不意味着教师不可以作相应的渗透。事实上,正是由于有了教师看似无心实则有意的点拨:“其实3的倍数特征与2、5的倍数特征其实有一点还是很像的,不知同学们注意到没有?”学生才可能从2、3、5倍数特征孤立、割裂、甚至是相互对立的表象中跳离出来,朦胧地感受到这三者之间的联系:2、3、5倍数特征可以看作是一样的,都是看它是不是谁的倍数,只不过判断一个数是不是2、5的倍数,只需看这个数的个位是不是2、5的倍数,而判断一个数是不是3的倍数就要看它所有数位的和是不是3的倍数。
《3的倍数的特征》是学生在学*过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。
1、找准知识冲突激发探索愿望。
找准备知识中冲纷激发探索,在第一环节中我先让学生复*2.5的倍数特征并对一些数据做出了判断而后我们“谁来猜测一下3的倍数特征”激发学生探究的愿望。由于学生刚刚复*了2.5倍数的特征,知道只要看一个数的个位,因此在学*3的倍数特征时,自然会把“看个位”这一方法迁移过来。但实际上,却不是这样,于是新旧知识间的矛盾冲突使学生产生了困惑,有了新旧知识的矛盾冲突,就能激发起学生探究的愿望,这样不反有利于学生对新知识的掌握,有效的将新知识纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。
2、激发学*中的困惑,让探究走向深入。
找准知识之间的冲突并巧妙激发出来,这是一节课的出彩之处,而我从孩子们的学号为入重点,让孩子们判断自己的学号是否是3的倍数,并再次探究3的倍数特征,并且发现3的倍数和数字排列顺序的有关系。但和这个数的个位上的数字有关。使之所探究的问题是渐渐完整而清晰,而后我又组织孩子们用摆小棒的方法来探究和验证,这种层层递进环环相扣的方法,促使探究活动走向深入,让学生获得更大的发展。
3、课后反思使之完美。
这节课结束后,我感觉最大的缺憾之处,最后点选了的倍数特征时,应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。而老练*题方面,也应形式面多样化,如用卡片练*判断,或通过打手势的方法或先听老师——这样效率更高,课堂氛围好,课堂不是同步,学生的发展始终是教学的落脚点。我们的教学应着眼于学生对解决问题方法的感悟,这样才可获得可持续发展的动力。
3的倍数是在学*了2、5的倍数特征的基础上进行学*的,我让孩子们提前进行了预*,通过授课发现孩子们的预*没有达到预想的效果。学生在汇报时能够圈出3的倍数,而且非常准确,在汇报3的倍数的方法时,他们大多数是借助结论得出来的,没有体现出他们研究的过程。因此,我在课上进行了及时的指导,把孩子们需要汇报的过程进行了详细的说明。孩子们很快理解了我的意思,立刻进行了新的分工。第一位同学汇报了他们找到的3的倍数,并介绍的找3的倍数的方法即,用这个数除以3,看商是不是整数而且没有余数。接下来汇报百数表中前十个3的倍数,让大家观察个位上的数字,通过观察发现3的倍数个位上是0-9的任意一个数,不能像2、5的倍数特征只看个位的特殊数就行了。因此只看个位不能确定是不是3的倍数。
由于孩子们有了提前的预*,孩子们心目中已经有了结论。因此在这个时候孩子们思考的深度不够,没有理解教材的意图。教师把教材的意图有意识地进行了渗透,让学生驻足片刻,把握课堂的结构。
第三个环节,孩子们发现斜着看每个数的各位逐渐加一,十位逐渐减一,因此个位上的数字和十位上的数字之和不变,而且都是3的倍数。让孩子试着总结结论:两位数个位上和十位上的数字之和是3的倍数,那么这个数也是3的倍数。
第四个环节,其实并不是把3的倍数特征总结出来了就完成任务了。这个结论只是通过观察百数表得出的关于两位数的结论,两位数满足这个特征,是不是所有的数都适用呢?于是让孩子试着写一个三位数、四位数而且是3的倍数,然后用这个结论进行验证,看是否符合。孩子们先试着写几个3的倍数,老师罗列到黑板上,然后分别用用各个数位之和相加的方法和除以3是否有余数的方法进行验证。验证的结果是肯定的,因此得出的结论适合所有的数。
到这里孩子们对于3的倍数特征已经理解的很透彻了,做起练*来也显得得心应手。孩子体验了结论得出的过程,每一个环节的设计都有他的意图,在每个环节孩子都有思考,有思维的碰撞,这才是教材的意图,才是真正的数学课。
心理学原理表明,新异的刺激可以引起学生的注意和兴趣。在教学中,根据不同的教材和要求,采取不同的教学方法,能够引起学生学*的兴趣,有利于创设良好的课堂气氛。
教学3的倍数特征这一课时,教师组织学生进行下列巩固练*:
下列数中3的倍数有:()
1435451003328767488
学生利用3的倍数的特征一下子就回答了上面的问题,得到了老师的肯定。这时我接着说:“我们来一场老师、学生打擂台怎么样?看谁说的3的倍数的数最多,我们看谁能考倒老师。”这时同学们兴趣盎然,纷纷出题来考老师。
生:42
师:111
生:78
师:57
生:81
师:20xx
生:6891
…………
这时师故意出错:369041
《2、5倍数的特征》教学设计
《2、5倍数的特征》教学反思
有关25倍数的特征优秀教案
《3的倍数的特征》教学设计
人教版25倍数的特征优秀教案
3的倍数的特征教学设计
《3的倍数的特征》教学反思
《3的倍数的特征》教案
数学《3的倍数的特征》教案
倍的认识教学设计
因数和倍数教学设计
有关25的倍数特征教案导入
《倍数和因数》教学设计
《因数与倍数》教学设计
《倍的认识》数学教学设计
《倍的认识》教学设计
《因数和倍数》教学设计
因数与倍数教学设计
《每逢佳节倍思亲》教学设计
《数松果》教学设计
有关2和5的倍数特征教案
《最小公倍数》教学设计
每逢佳节倍思亲教学设计
《猜数游戏》教学设计
数的认识教学设计
*均数教学设计
《有理数》教学设计
识字3教学设计
《*作3》教学设计
《练*3》教学设计