关于语文古诗中的数学问题的文字专题页,提供各类与语文古诗中的数学问题相关的句子数据。我们整理了与语文古诗中的数学问题相关的大量文字资料,以各种维度呈现供您参考。如果语文古诗中的数学问题未能满足您的需求,请善用搜索找到更适合的句子语录。
高考数学数列问题的答题技巧
高中数学中大家都学*了数列这一知识点,而数列在高考中也是经常出现的考点,数列问题有哪些技巧可以又快又准地解答?小编为您准备了高考数学数列问题的答题技巧,希望对您有所帮助!
高考数列通项、求和的答题技巧
(1)解题路线图
①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
(2)构建答题模板
①找递推:根据已知条件确定数列相邻两项之间的'关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
⑤再反思:反思回顾,查看关键点、易错点及解题规范。
高考数列问题的易错点
1.忽视等递推关系成立的条件,从而忽视检验前几项。
2.忽视n为正整数的默认条件,冒然求导,或利用不等式得到非整数的取等条件。也会因此心理忽视这一个很好用的条件。
3.裂项相消忘记留下了几项。可以先写几项验证。
4.通过方程求解的数列可能会漏下情况。
5.等比数列注意公比为1不等同于常数列(如0)。
6.下角标的不规范可能会使“-1”模棱两可,需要注意。
7.累加法或累乘法漏掉第一项。
高考数学数列知识点总结
等差数列公式
等差数列的通项公式为:an=a1+(n-1)d
或an=am+(n-m)d
前n项和公式为:Sn=na1+[n(n-1)/2] d或sn=(a1+an)n/2
若m+n=2p则:am+an=2ap
以上n均为正整数
文字翻译
第n项的值=首项+(项数-1)x公差
前n项的和=(首项+末项)x项数/2
公差=后项-前项
等比数列公式
等比数列求和公式
(1)等比数列:a (n+1)/an=q (n∈N)。
(2)通项公式:an=a1×q^(n-1); 推广式:an=am×q^(n-m);
(3)求和公式:Sn=n×a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1) (q为公比,n为项数)
(4)性质:
①若m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq;
②在等比数列中,依次每k项之和仍成等比数列.
③若m、n、q∈N,且m+n=2q,则am×an=aq^2
(5)"G是a、b的等比中项""G^2=ab(G ≠ 0)".
(6)在等比数列中,首项a1与公比q都不为零. 注意:上述公式中an表示等比数列的第n项。 等比数列求和公式推导: Sn=a1+a2+a3+...+an(公比为q) qxSn=a1xq+a2xq+a3xq+...+anxq =a2+a3+a4+...+a(n+1) Sn-qxSn=a1-a(n+1) (1-q)Sn=a1-a1xq^n Sn=(a1-a1xq^n)/(1-q) Sn=(a1-anxq)/(1-q) Sn=a1(1-q^n)/(1-q) Sn=kx(1-q^n)~y=kx(1-a^x)。
幼儿园数学教育中存在的问题
导语:有些幼儿园教师对数学教育活动的目标、价值和功能、幼儿数学学*的心理机制等缺乏足够的了解,导致幼儿数学教育活动课堂气氛沉闷,效率低下。
1、教学活动目标单一
《幼儿园教育纲要》中关于数学教育,明确地提出了四个方面的目标,但是我们认为,在幼儿学*数学的过程中,应该实现激发幼儿的兴趣和求知欲,发展幼儿的逻辑思维能力和空间想象能力,训练幼儿做事认真细致,具有主动性、坚持性、条理性和创造性,教育幼儿勇于克服困难,培养幼儿学*的毅力和自信心等多项目标,为孩子今后发展打好基础。然而,我们接触到的一些教学活动计划,只提出有关学*数学知识单方面的目标。教师如果对数学教育的目标缺乏全面的认识,每次教学活动仅以学*数学知识为唯一目标,那么,《纲要》所规定的其他目标就无法完成。
2、忽视幼儿的思维特点
幼儿期思维发展和趋势是从直觉行动思维向具体形象思维发展,抽象逻辑思维尚处于萌芽状态。幼儿学*数学,主要通过四个阶段,即实物操作——语言表达——图像把握——符号把握,从而建立数学的知识结构。每一次数学活动都必须由具体到抽象、由低级到高级逐步过渡,而且必须经过长期训练才能达到目标,不是通过一两次活动就能完成的。
有的教师不考虑幼儿的思维特点,忽视幼儿的学*规律,甚至过高地估计幼儿的接受能力,其教学效果当然是不会理想的。我们还发现这样一些现象:有的教师片面依靠自己的演示,把答案强加给幼儿;有的教师设计的活动是跳跃式的,跳过实物操作的环节,直接进入图像把握和符号把握这两个环节;有的设计则是单纯的从符号到符号的过程。然而,数理逻辑顺序的建构决不是这么简单就能完成的,幼儿阶段的思维特点决定了这样的教学是不合适的。
3、数学概念模糊
数学教学是具有高度抽象性和严密的逻辑性的教学活动,它要求教师准确把握数学概念的属性,并能用幼儿容易理解的数学语言来表达。这对幼儿理解和掌握数学概念是极为重要的。
但是,有些教师在教学过程中,经常出现概念表述不清和理解错误的情况。例如在教中班幼儿按两个特征进行分类时,先按一个特征分一次,再按另一个特征分一次,活动就结束了。其实,这一活动还应该有一次对同一批物体按两个特征进行分类的活动环节。再如,教幼儿序数时,由于对序数表示集合中元素次序的'含义理解不透,在教学过程中,使序数词和物体之间发生固定不变的关系,从而使幼儿错误地认为“小白兔只能住第五间房”。诸如此类的问题在实际教学中较为普遍地存在着。
我们认为,教师加强对数学理论的学*是十分必要的。只有充分地了解数学理论以及科学全面地理解数学概念,才能将数学概念正确地运用到教学活动中去。例如,集合是人们所感知的具有某种共同属性的事物的整体。教师如果充分认识到集合概念在幼儿计数和数概念形成中的重要性,那么就会在多种活动中让幼儿根据着眼点的不同,认识种种不同的新集合。通过对实物的交叉分类,不仅可以活跃幼儿的思维,而且可以培养幼儿的创造力。因此,教师仅仅做到知其然是不够的,还应做到知其所以然,这就必须去学*数学理论,弄清数学概念。
4、教师的语言不严谨
教师的语言表达是否正确、明白、易懂,直接影响着向幼儿传授知识的效果,影响到幼儿语言和思维的发展。在数学教学中,数学知识本身的特点和幼儿思维的特点决定了幼儿学*和理解数学概念是有困难的。
因此,教师的语言表达对幼儿正确理解数学概念及有关知识是相当重要的。然而,有的教师对数学语言的规范性还未引起足够的重视。在教学中,语话不作推敲、颠三倒四、前后矛盾等缺乏逻辑性、表达不明确的现象随处可见。如教幼儿感知2的数量时,教师问:“谁能在我身上找出什么是27”这个问题叫幼儿无法理解。又如,在教幼儿按颜色特征进行分类时,当幼儿按要求将相同颜色的塑料片放在一起后,教师又问:“你们为什么这样分?”如果要回答这个问题,那答案就是教师叫这样分的。其实应问:“你们是怎么分的?”诸如此类的问题,问得很不明确,叫幼儿甚至**也无法解答。有的则表达不明确,语言啰嗦。
5、忽视评价的教育作用
我们这里所说的评价,是指以幼儿为对象,对幼儿活动、幼儿在教育过程中的受益情况和所达到的水*作出价值判断。教师对幼儿的评价,应该是科学的、合理的评价,是能激发幼儿自信心,保护幼儿的自尊心,调动幼儿学*的主动性、积极性,以及促进幼儿发展的。
在数学教学活动中,有的教师没有考虑到幼儿之间存在着个体差异,每个幼儿都希望得到教师的承认和赞许等实际情况,而往往采用统一的标准去要求和评价不同发展水*的幼儿。
例如,有的教师在幼儿回答不出问题时,常常给予批评、挖苦;在幼儿回答错了的时候,向全班小朋友说:“大家说××说得对吗?”导致全班幼儿大声否定。这样做不仅会伤害幼儿的自信心和自尊心,挫伤幼儿的学*积极性,严重时还会造成幼儿的心理障碍。
有的教师的评价语言很贫乏,在一次活动中不断出现“不错”、“很好”、“真会动脑筋”等词语。这样的评价缺乏针对性,不能对幼儿进行有目的的指导。操作活动结束时,有的教师往往注意对操作材料的收拾整理,而对幼儿在教学过程中的活动状况不作任何评价,这不仅不利于对教学过程的调节、控制和反馈,而且对幼儿在活动中的表现也不能及时强化或纠正.幼儿渴望得到评价的心理需要也得不到满足。
【摘 要】
随着社会的发展,教育的不断变革,幼儿园教育也逐渐被人们重视。幼儿园教育是儿童的启蒙教育,对于儿童未来的学*成长具有非常重要的影响。因此,做好幼儿园教育的相关探讨是非常有必要的。本文主要从当前幼儿园数学教育存在的问题,以及解决的措施两个方面进行简要的分析。
【关键词】
幼儿园;数学教育;问题;措施
数学知识的学*对于培养儿童的思维逻辑能力具有重要意义,因此幼儿园一定要重视儿童的数学教育。幼儿园数学教学与学校的教学存在一定的差异,对于教师教学方法以及耐心的考验更为严格,所以对于当前在幼儿园数学教育中存在的问题,相关工作人员一定要给予重视,找到相应的解决办法,从而推动幼儿园数学教育质量水*的提升。
一、当前幼儿园数学教育中存在的主要问题
当前幼儿园数学教育主要存在以下几方面的问题:第一,教学目标较为单一。当前很多幼儿园教师在进行数学知识的教授时,目标非常明确,就是让学生明确某一个知识点,缺少对学生思维逻辑的培养,教学目标过于单一;第二,教学内容局限。当前很多幼儿园教师在进行数学知识的教授时,缺乏对教学知识的深度挖掘与广度拓展,将教学内容局限在课本上;第三,缺乏对学校资源的利用。幼儿园中可利用的教学资源非常多,但一些教师却很少能对其进行有效的利用,不仅浪费了教学资源,而且不利于调动学生学*数学的积极性;第四,缺乏灵活多样的教学手段。一些幼儿园教师在进行数学知识的教授时,缺乏时代性,不能灵活的使用教学方法,致使学生学*数学的效率不高,教师的教学效果也不明显。
二、提高幼儿园数学教育水*的主要措施
1.完善教学目标
幼儿园教师在进行数学教学时,要做好教学目标的设定,然后根据教学目标进行相应的教学。幼儿园教师在进行数学教学时,在教授儿童数学知识的同时,还应该根据有针对性的对儿童的思维逻辑进行锻炼。此外,幼儿园教师在进行教学时,还应该注重对儿童学*数学知识的兴趣,不要让儿童产生厌学的心理,也不要使儿童产生对数学学*的恐惧感,而是让其在轻松的氛围中学*相关知识,为其以后知识的学*打下坚实的基础。
2.丰富教学内容
幼儿园在进行教材选定时,一定要选择适合儿童身心发展规律的教材,从而为提升教学质量做出保障。在选定优秀的教材以后,幼儿园教师在进行教学时,不要仅仅局限在教材氛围内,而是应当根据班级儿童的学*情况,对儿童的教学内容进行适当的拓展和延伸。例如,幼儿园教师在教授儿童十以内的加减法的过程中,要根据班级学生的实际情况进行适当的拓展,如果班级学生掌握的比较好,教师可以根据十以内加减法的规律,引导儿童学十以内的加减法。
3.利用教学工具
幼儿园的儿童的注意力集中时间较短,常常在挺教师讲解知识的过程中,就会溜神。教学工具的使用,可以有效将学生的注意力引回,帮助教师高质量完成教学任务。例如,教师在教授学生学*等分实物或图形这节内容时,如果只是干巴巴的口述不仅很难让学生明白,而且也会很无趣,无法引起学生的注意,如果教师在黑板上画出相应的图像,还会浪费很多课堂时间,不利于课堂教学的高质量完成。因此,教师就可以在事先准备一些小道具,在课上教授儿童实物的认识和辨别时,只要拿出道具,就可以让学生快速了解,并且学生看到新奇的事物,注意力也会较为集中,这样可以有效调动起学生的学*兴趣,从而推动教学的高效完成。
4.改善教学方法
改善教学方法,使用多样的教学手段,对于调动学生的学*兴趣,营造热烈的教学气氛具有重要意义。这要求教师在进行数学教学时,能够掌控课堂,并且能够根据教学内容以及学生的身心特点,选取正确的教学方法,发挥学生的主体地位,从而使学生能够在轻松的氛围中学*新知识。例如,教师在教授幼儿园的学生认识元角分时,可以实现准备一些现金,然后为学生创设一定的情境,从而帮助学生认识元角分,并且掌握其中的关系;再例如教师教授学生认识星期时,可以通过做游戏的方式进行讲解,教师可以在班级选出七个人,分别代表一个星期内的七天,然后创设一个情景,让学生在这样一个轻松的氛围中完成内容的学*。
三、总结
综上所述,随着社会的进步,人们思想观念的转变,幼儿教育也越来越受关注。虽然幼儿园教育也在随着时代的发展,不断进行调整,但当前的幼儿园数学教育仍存在一定的问题。为此,需要幼儿园教师要根据学生发展的特点,采用适当的教学方法,引起学生的注意力,激发学生的学*兴趣,从而提高幼儿园数学教学水*的提高。
参考文献:
[1]*. 农村幼儿园开展数学活动的现状与对策研究[J]. 乐山师范学院学报,2013,05:129-132.
[2]王殿双. 对小学数学教育中美育问题的思考[J]. *校外教育,2015,11:84.
[3]羊小华. 农村幼儿园数学活动的现状分析与改进策略[J]. 西昌学院学报(自然科学版),2013,02:149-152.
[4]李北*. 幼儿园数学教学活动的有效性探究[J]. 学周刊,2015,04:50-51.
考研数学备考中的常见问题
在日常学*和工作中,我们都不可避免地要接触到试题,通过试题可以检测参试者所掌握的知识和技能。那么你知道什么样的试题才能有效帮助到我们吗?下面是小编为大家整理的考研数学备考中的常见问题,仅供参考,大家一起来看看吧。
考试大纲【查看大纲解析】问题:
问题1:老师,今年考研数学有什么变化没?复*过程中需要做哪些改变?
答:对比2013考纲和2012考纲来看,几乎没有任何变化,唯一变的是线性代数中线性方程组部分,"克莱姆法则"改为了"克拉默法则",实质上是一样的内容,只是换了个称呼而已。按照你原来的复*计划学*就可以。
问题2:老师,数二需要注意哪些问题?谢谢!
答:数二不需要考概率论,时间相对数一和数三考生来说,要充裕一些。但是高等数学所占的比值高了,达到78%,这就需要同学们对高数要引起足够重视。对比新旧考纲,几乎没有变化。考查的重点仍然是基础知识,一定要夯实基础再进行强化冲刺学*。
问题3:老师您好,请问考那种要考数学的专业,对于我们这种大学没上数学课的文科生来说,数学是不是很难?
答:对于没有学过数学的文科生来讲,数学有一定的难度,但天道酬勤,只要你肯付出比别人更大的努力,也是有可能取得理想成绩的。
复*方法问题:
问题4:老师我觉得数学找不到感觉,看答案能懂但自己想不到怎么办?
答:原因可能有两方面:一方面,你对基础知识掌握的还不够扎实,另一方面是做题的质量不高。遇到每一道题,一定要自己多思考下,即使不会,但也思考了,不能只看答案。同时,做每一道题,一定要明白其解题思路,主要考查的是哪些知识点,这些知识点是如何运用到解题中的,做完每道题一定要总结,这样才能学好。
问题5:老师,我是按照高数、线代、概率这样的顺序学*的,问题是当我学*线代时,发现前面高数的知识很多都不记得了?这正常吗?我该怎么办?谢谢
答:这个需要分情况来说。如果回头去看高数,看一眼就能想到相关的知识,那应该是你做的*题有点少的缘故,不过尚属正常现象,因为高数和线代的联系并不是很紧密。这就需要你时不时地回头去翻看高数的内容,加深记忆。如果返回去看高数,发现很多知识还是一点思路也没有,理解起来很吃力,那就说明你第一轮的学*不到位,需要继续夯实基础,不要盲目追求进度,质量是关键。
问题6:考研数学全书里感觉很多东西很技巧,根本想不到,这些东西怎么掌握啊?
答:技巧性知识,需要通过多练才能很好地掌握。同时,在看例题时,一定要明白其解题思路,考查的知识点,能够做到举一反三,才是最重要的,不要只关注答案。
问题7:老师您好,我是二战考生,去年数学三考了100,*时做真题的时候还行都能130左右,可是考试的时候就不太熟,今年数学该怎么复*呢,是要大量做题吗?谢谢老师
答:数学还是要靠练,练的目的是查到自己的薄弱环节,所以一定对做过的题目多分析,尤其是做错的题目,自己做错的原因是什么要明确,概念不清的再*材看,解题思路不明确的要记住并拿一些类似的题目重复练*。
问题8:老师你好,我想请问一下,在把数学全书过了一遍后,该如何有效利用真题呢?把真题快速过一遍知道常考题型,回到全书做相关题目的强化提高,再做模拟题?还是应该连续做一套或者几年真题后,真题中不会的返回全书中,把该类的题再做一遍,然后再继续做真题?怎样才能最好的利用真题呢?谢谢
答:真题一定要认真的研究,不能说走马观花的过一遍就完事,这样是达不到复*的效果的,真题的每一道题目都要清楚考察的知识点,解题思路是什么,自己不能独立完成的题目要总结问题在哪里,回到教材或全书上或听过的课程中再把类似的内容强化一下,另外,真题至少研究两遍,一遍按章节复*,一遍做套题训练。
问题9:老师,我数学概率论还没看完,看完后我是应该做题还是直接再看一遍复*全书呢,还有我用的数学复*资料是12年的,有必要再买本13年的吗?
答:数学光看是不行的,一定要动笔练*,教材复*过一遍之后现在要抓紧练*复*全书上的题目,例题也要自己先做再看答案,考研数学每年变化不大,12的资料也可以,但12年历年真题中可能少了12年的真题,如果你不打算买一本新的历年真题的话,这个你可以从网上下载下来做。
问题10:老师,你好,对于数学吧,我做了一段时间李永乐全书,也报了强化班,可是发现全书的进度很慢,做题的效果也不是很好,现在不知道是放弃呢还是如何调整的好?
答:现在10月份,时间还是来得及,千万不能放弃,学*是一件循序渐进的事情,贵在坚持,既然你上了强化班的课,一定有自己的笔记,做全书的时候结合讲义和课程复*,别着急,全书研究过一遍之后,再研究真题,如果实在赶不上进度,到11月份就直接进入真题的复*,但目前还是建议你继续全书的复*。
拓展:考研数学高分攻略
夯实基础
要具备牢固扎实的基础知识。数学,最需要强调的是基础。很多同学不重视基础的学*,反而只是忙着做题,做难题,就想通过题海战术取胜,这是不行的,就像是不会走路的孩子总想直接跑步一样。当然,这里并不是说不用多做题,做题量也是要保证的,这点在下面会说到。
分析一下数学试卷就会发现,80%的题目都是基础题目,真正需要冥思苦想的偏题、难题只是少数。回忆一下你做题时,题目中涉及到的知识点是否清楚的了解了?要用到的公式、定理是否提笔就能写出来?这一点做不到,怎么能进入下一步寻找解题方法并写出完整的解题过程呢?事实上,大部分同学的回答是还需要去翻书查找,要知道,考场上是没有课本的。所以,一定要先打好扎实的基础,再进行解题能力和解题速度的训练。
具体来说,数学基础的掌握,可以通过以下方法:
(1)把数学复*全书上总结好的知识点认真掌握住。一般不同版本的复*全书上的知识点讲解都很全面、详细,还有例题讲解当中总结出的解题技巧和方法,推导出的公式、定理,都要重点记忆。
(2)数学也要做笔记。由于复*全书上的知识点过于详细,在以后的第二、三轮复*中,就没有时间去系统的看了,而且可能其中大部分你已经掌握了。这就需要你把其中精华的地方和自己掌握的不好的地方以及考试的常考知识点总结在一个本子上,这样再复*的时候就可以直接看这个本子,会节省下很多时间,提高效率。而且复*间歇,可以随时拿出来记一记、背一背。
(3)这些基础知识如果一段时间不看就会有些生疏,用的时候拿不准。所以,要每天都携带在身上,就像英语单词小册子一样,要经常温*。
勤于思考
要勤于思考,多动脑。很多同学学数学就喜欢看例题,看别人做好的题目,分析别人总结好的解题方法、步骤。只这样是远远不够的。只是一味的被动的接受别人的东西,就永远也变不成自己的东西。
第一遍复*可以只看题,但以后就必须自己试着做了,先不看答案,完全通过自己的能力做着试试,不管能做到什么程度,起码你自己先思考了,只有启动自己的大脑,才会使知识更深入的得到理解和掌握,才能真正成为自己的知识,也才会具有独立的解题能力。
在做题时不要太轻易的选择放弃,想一会儿没有思路就去看答案,一定要仔细开动脑筋想过之后,实在不行再求助于外力。我在学数学的过程中,很少去问别人这道题该怎么做,就想通过自己的思考解决,不轻易认输,希望大家也不要省略掉这一认真思考过程,要勇于挑战自己,不要轻易投降。
归纳总结
学会总结,善于归纳,使知识系统化。善于总结也是我要十分强调的一点。因为很多同学做题的过程就到对过答案或是纠正过错误就结束了,一套题的价值也就到此为止了。我建议大家在纠正完错误之后,再把这套试题从头看一遍,总结一下自己都在哪些方面出错了,原因是什么,这套题中有没有出现我不知道的新的方法、思路,新推导出的定理、公式等,并把这些有用的`知识全都写到你的笔记本上,以便随时查看和重点记忆。
对于大题的解题方法,要仔细想一想,都涉及到哪些科目和章节了,这些知识点之间有哪些联系等,从而使自己所掌握的知识系统化,以达到融会贯通。只有这样,才能使你做过的题目实现其最大的价值,也才算是你真正做懂了一套题。如果你能够这样做了,那么做过的题在以后的复*中如果没有时间了,就不用再拿出来重新看了,因为你已经把要掌握的精华总结好了,只需看你的笔记本就OK了。
避免粗心
养成做题仔细、谨慎的*惯。粗心大意也是许多同学的一大难题。你想,题目明明会做,可答案偏偏不对,大题还好些,还能给你一些步骤分,小题就惨了,是一分不得的。所以,这一点也要引起高度的重视。
一般来说有这个问题的同学有一个共性,就是在草稿纸上演算时,比较潦草,纸上经常是乱七八糟,想回过头查找一下某道题的计算过程,是很难的一件事。还有就是演算的时候不认真。帮帮建议大家在使用草稿纸的时候,把纸利用的整齐一些,写的也规整一些,书写认真一些,慢慢就能减少错误率了。
适度练*
保证做题量,还要有一定的普及性。可以说,题海战术在一定意义上还是很有道理和必要性的。对于数学考试来说,就是解题,理论再好也要应用于实践,要运用自如。因此,在打好基本功以后,就要开始不断的做题了。
首先,题目的选择上,要广泛一些,各个名师的模拟题、复*题等都涉及一些。这是因为,每个人的出题思路是一定的,重点偏向及难易程度也差不多,做不同人编的题,有助于题型的广泛摄取和把握,只有题型见得多了,思路才能拓展开,而且各种难度的题目也都尝试过了,见到考试卷时才不会有太多措手不及的感觉,这就是我说的普及性。
其次,做题的数量上,在你的能力范围内大量练*,但不必太多,尤其是到了最后冲刺阶段,主要精力应放在政治和专业课上面的时候,也就没有那么多时间去做数学题了。但也一定不要就把数学放鸽子了,因为数学不做就会手生,找不到感觉,所以,要给自己安排好一个做题计划,比如说两天一套题或三天一套题,根据自己其他科目的复*情况以及此门课程的复*情况来定。
最后,留一两套题在考前作为热身训练,不过不用在意那时做题打出的成绩,因为就要上考场了,好坏都没有多大的意义了,关键是用它来找找做题的感觉。
高中数学*面向量的最值与范围问题
普通高中课程标准实验教科书(人教A版)《数学必修4》第二章第四节“*面向量的数量积”的第一课时---*面向量数量积的物理背景及其含义。以下是小编带来的高中数学*面向量的最值与范围问题,欢迎阅读。
*面向量中,有关最值问题的求解通常有两种思路:
一种是“形化”,即利用*面向量的几何意义将问题转化为*面几何中的最值或范围问题,然后根据*面图形的特征直接进行判断;
二是“数化”,即利用*面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决。
高中数学有关*面向量的公式
定比分点
定比分点公式(向量P1P=λ向量PP2)
设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ向量PP2,λ叫做点P分有向线段P1P2所成的比。
若P1(x1,y1),P2(x2,y2),P(x,y),则有
OP=(OP1+λOP2)(1+λ);(定比分点向量公式)
x=(x1+λx2)/(1+λ),
y=(y1+λy2)/(1+λ)。(定比分点坐标公式)
我们把上面的式子叫做有向线段P1P2的定比分点公式
三点共线定理
若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线
三角形重心判断式
在△ABC中,若GA +GB +GC=O,则G为△ABC的重心
[编辑本段]向量共线的重要条件
若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。
a//b的重要条件是 xy'-x'y=0。
零向量0*行于任何向量。
[编辑本段]向量垂直的充要条件
a⊥b的充要条件是 ab=0。
a⊥b的充要条件是 xx'+yy'=0。
零向量0垂直于任何向量.
设a=(x,y),b=(x',y')。
1、向量的加法
向量的加法满足*行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)。
2、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0
AB-AC=CB. 即“共同起点,指向被减”
a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').
4、数乘向量
实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣∣a∣。
当λ>0时,λa与a同方向;
当λ<0时,λa与a反方向;
当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;
当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律
结合律:(λa)b=λ(ab)=(aλb)。
小学科学问题探究论文
在学*、工作生活中,大家或多或少都会接触过论文吧,论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成。你写论文时总是无从下笔?以下是小编整理的小学科学问题探究论文,欢迎阅读,希望大家能够喜欢。
小学科学是以培养学生科学素养为宗旨的科学启蒙课程。
它是一门综合性极强、信息量极大、知识面极宽的基础性课程。开放性的学*环境、探究性的学*方式、自主性的学*活动更有利于培养学生的科学探究的意识、合作探究的能力和勇于创新的精神。
小学科学课本是以单元编排为特征的教材,系统性、针对性较强,那么如何运用网络资源的优势,为学生的自主学*创设有利于营造自主学*的环境;如何提供网络资源的*台,为学生的自主学*拓展有利于提高自主学*的空间,进一步激活课堂,使科学教学更具有生命力呢?
一、依据教学内容,丰富网站材料,营造学*环境
通常的专题站一般由“教材知识”、“拓展资源”、“讨论协作”和“评价检测”四个模块组成。在实践中,我们从学科“学”的实际出发,以科学教材为基础线条,以建构主义理论为指导思想,在网站建设中突出内容的丰富性和有序性,以达到资源、*台、工具的优化合理组合。为学生开展探究性学*活动营造良好的自主学*环境和搭建自主互动学*的*台。
1、选择材料,丰富内容,创设环境。
在网络环境下,使科学教材信息与学生之间产生作用,达到科学教学的目标,很重要的一点就是所提供的教材信息更适合学生探究性学*的展开,更有利于激发学生学*的兴趣。因此,教者依据学生的年龄特点和教材要求有针对性地寻找选择丰富网站内容的资源。例如小学科学五年级下册第三单元《它们是怎样延续后代的》。
在网站中除了提供动植物繁殖后代过程性资料之外还针对学生*时能接*菊花培植的特点,单独增加了繁殖后代具体的操作过程,使学生有机会进一步学*并指导其实践操作。同时,人类是如何繁衍后代的一直是教学的难点,教者在网站中增加了一位医生的介说并配上图片,使学生在自主学*过程中既有兴趣又比较形象直观,从而使学生“我是怎样出生的”有了一个初步的了解,懂得生命来之不易,应珍惜生命,回报父母的养育之恩。
2、优化结构,丰富内容,营造环境。
在网络环境下开展自主学*,如果将搜集到的信息和科学教材上的所有内容堆砌在文本上,自主学*时随时点击,那么学生的学*就比较乱,其认知过程就缺少一个有序的进程。那么,就会影响在有限时间内的学*效率。因此,教者认为必须对其内容依据问题进行排序,突出资源的主题性、序列性。例如小学科学五年级下册第四单元《岩石与矿物》,教者设计了“导读台”提供学*问题序列,以激发学生保护资源的意识。将与教材有关的内容制作成导航图,指点学生阅读信息与解决问题的途径,有助于学生在整体浏览中围绕中心问题自主学*,在部分品读中围绕重点问题自主探究,在独立思考中围绕解答问题阅读信息,在自主学*中围绕解决问题处理信息提高发展。
二、依据学生需求,丰富网站形式,细化学*流程
科学教材编排单元性比较强,因而就为网络环境下开展问题探究自主学*提供了主题性明显的特点,教者如何依据学生心理特点和年龄特征,再根据教材特点,编排呈现网站形式非常重要。总体上其网站内容形式的呈现上可归纳为三种形式:学前浏览、学中导航和学后延伸。
1、学前浏览,拓展概念,激发兴趣。
科学课导入新课时,由于学生学前概念比较肤浅,对新的学*内容存在着不确定性和好奇心,因此,教者充分利用这一特点,设计整体学前浏览内容,以拓展学生的已有概念,进一步激发学生的学*兴趣。例如小学科学六年级上册《我们的地球》这一单元,教者提供了的主题的内容,以丰富的地球信息与呈现形式提供给学生,让学生快速浏览,然后再让学生提出更进一步探究学*的问题,为本单元或本节课的学*打下良好的基础。
2、学中导航,提供信息,培养能力。
科学课堂教学中教者结合具体的教学内容和具体的学*形态,适当提供有助于开展问题探究自主学*的`主题内容,让学生围绕中心问题探索学*信息,解答学*问题。例如《我们的地球》就设计了这样三个中心问题,这实际上为本单元的教学建构了一个知识体系,形成了知识网络,也为学生的自主学*导航,为学生的自主探究引路。
3、学后延伸,丰富概念,陶冶情操。
学生通过学前浏览和学中导航两个阶段的自主学*,其知识更加丰富、兴趣更加浓厚,但脑海中所产生的问题可能也更多,这就更需教者在此时提供更多的知识信息,让学生进一步去搜寻,以满足学生渴求知识的欲望和探索未来的精神。例如《我们的地球》这一单元学*后,教者认为,可依据学生的所提出的问题再次提供一些网站信息让学生再去浏览学*,也可编排一些主题让学生自己去搜集相关信息,让学生永远做学*的主人,研究的主人。
三、依据学科特点,丰富网站途径,优化教学方法
网络环境下的学*,教师作为引导者,进行着问题设置、资源提供、内容设计、任务提出以及组织协调等学*导航的工作,而学生作为探究者,则进行着明确任务、围绕问题、探索实践、自主学*等实践的任务。这就需要大量的时间与空间,途径与方法。教者认为,网络环境下课堂教学的方法有别于常规性的课堂,特别是科学课也有别于其它学科。因而通过实践与研究,笔者依据科学学科的特点将网络环境下问题探究教学模式的操作归纳为“问题探究”教学方式及“主题探究”教学方式两种。
1、问题探究,获取知识,形成技能。
根据科学教学内容,相当一部分教材的教学需要组织学生开展小组合作实验活动,那么这样的课型就可运用“问题探究“教学方式进行课堂教学。
例如小学科学五年级下册第二单元“形状与结构”中的《折形状》一课的教学,教者在网站中提供了关于形状方面的模型、建筑以动植物的外形等,让学生点击浏览,提出问题导入新课。然后组织学生围绕问题进行小组合作探究,体会各种形状与承受力的关系。最后组织讨论,再次点击进入网络,说一说,网络中的物体为什么这样设计。整个学*过程,学生始终围绕本节课的学*中心,展开自主学*、自主探究、互相交流、共同探讨,而教师则是课前作好准备,组织学生开展学*活动,并参与到学生的探究活动之中,适时进行个别指导,及时捕捉动态信息,调控教学进程。师生真正成为一个学*的共同体,共同分享集体的智慧和探究的成果。
2、主题探究,拓展知识,增强意识。
科学教学中有相当一部分内容不需要进行小组合作实验,而只要进行主题式学*与讨论,就能达到学*目标。因此,教者建议这一类型的课堂教学可选用“主题探究”的方式展开教学活动。
例如:小学科学五年级下册第四单元“岩石与矿物”中《日益减少的矿物资源》一课。首先让学生说一说矿物资源对人类有何作用,你对地球上的矿物资源有何思考,并出示开采、提炼、运用的相关图片,确定本节的学*主题是:矿物资源日益减少,人类怎么办?围绕这一主题组织的探究活动。接着组织小组讨论。在整个课堂教学结束前还可以上学生对资源开发与保护,新能源研发等进行创造性的设计,课后进一步打开网站,搜集相关信息。这样的教学活动自然而有效地拉*了学生与社会、个人与国家的距离,进一步增强了学生的社会责任感。
通过实践,我们深深体会到,网络环境下小学科学问题探究教学模式的有效运用,丰富了科学教学内容,拓展了课堂教学时空,激活了课堂教学活动。同时,也进一步转变了教师的教学观念,更新了教学方法,促进学生自主学*方式的尝试以及自主学*能力的培养,为学生将来投身信息化时代进行终身学*实现可持续发展打下了良好的基础。
数学《解决问题的策略-列举》评课稿
根据解决问题的需要,收集有用的信息,进行有条理的思考,按一定的顺序一一列举,从而有效的地解决问题。进一步发展学生积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验。以下是小编整理的数学《解决问题的策略-列举》评课稿,希望对大家有所帮助。
今天上午听了校级研究课卢老师的执教的《解决问题的策略——列举》感触很深。
无论是卢老师精心的教学设计,巧妙的课堂构思,还是学生的积极配合,踊跃发言都给我们留下了深刻的印象。
在下午的集体备课中,很多老师都提到了卢老师类似的优点,这里不再多说,只是想和大家分享一下听完这堂课后的一些困惑和想法。
1、本课的教学重难点是让学生理解一一列举的方法,并能主动运用这种方法来解决生活中的一些问题。首先,我认为让学生明白为什么我们要用一一列举的策略来解决问题是最重要的。教学中,教师所呈现给学生的几道例题:如用18跟栅栏围长方形,有几种围法?订阅3种书籍的不同订法……都需要首先让孩子明白为什么我们要选择一一列举的策略,选择其他方法容易出现什么问题? 这一点卢老师做的比较到位,她通过展示了几位同学的作业情况,让孩子自己发现问题,有的答案重复了,有的答案遗漏了,为了防止类似的情况发生,接着卢老师顺其自然的提到了一一列举法,让孩子在遇到问题和困扰后接受起来比较容易些。
2、本课的第二个重点是教孩子如何使用一一列举法?使用一一列举法书上主要是列表法。这种方法虽然可以但不实用。一、上课时孩子没有时间去画表格。二、这种方法相对来说不是最方便和最容易让孩子接受的。在教学例2时,订阅3种书籍有几种方法呢?卢老师让孩子放手自己去解决。结果让人惊喜,大部分孩子解决起来毫无困难,甚至还有相当一部分孩子已经想到了用字母或者数字来代替书籍的名字来列举。这种方式简洁明了,通俗易懂,最重要的是孩子自己动脑思考的结果,不得不让在场听课的老师为之惊叹。看来放手让孩子去做,有时确实能够获得意外的惊喜。听到这里,我不禁要问,既然孩子最易接受用符号来列举的方法,那书上介绍的列表法是否可以不讲或者略讲呢?
3、例3是道关于投镖的问题。标靶上有3种情况,10环,8环和6环。投2次得到的.总环数会有几种情况?在这里,卢老师和学生一起探讨了4种情况:一、两次投中的环数相同。二、两次投中的环数不同。三、一次投中一次未投中。四、两次都未投中。我个人认为分为四类不太恰当,应该分成三类较清楚,第一种和第二种情况完全可以合二为一,其实说的就是两次都投中的情况,只不过在这个前提下再细分为两类而已。这样分类讲起来可能才更加清楚点。
4、投标的结果出现了重复。如8+8=16,10+6=16,这两种情况尽管答案相同,但表示的意思是不一样的,教师在讲解的时候一定要注意讲清楚。为了防止学生的答案写的不清楚,在答时也应建议学生将所有的答案有序排列,这样才能做到不重复,不遗漏。
以上是我听完课后一些不成熟的想法,希望能够与大家分享,还望批评指正,共同学*!
学问成才的古诗句
1.如切如磋,如琢如磨——《诗经.卫风.淇奥》
2.学非探其花,要自拨其根——唐.杜牧《留诲曹师等诗》
3.十年磨一剑——唐.贾岛《剑客》
4.不是虚心岂得贤——宋.王安石《诸葛武侯》
5.少年辛苦终身事,莫向光阴惰寸功——唐.杜荀鹤
6.古人学问无遗力,少壮工夫老始成——宋.陆游《冬夜读书示子聿》
7.故书不厌百回读,熟读深思子自知——宋.苏轼《送安惊落第诗》
8.问渠那得清如许,为有源头活水来——宋.朱熹《观书有感》
9.百川东到海,何时复西归?少壮不努力,老大徒伤悲——汉乐府民歌《长歌行》
10.志士惜日短,愁人知夜长——晋.傅玄《杂诗》
11.盛年不重来,一日难再晨.及时当勉励,岁月不待人——晋.陶渊明《杂诗》
12.青春须早为,岂能长少年——唐.孟郊《劝学》
13.莫等闲,白了少年头,空悲切——宋.岳飞《满江红》
14.逢事独为贵,历代非无才——唐.陈子昂《郭槐》
15.黄金无足色,白璧有微瑕.求人不求备,妾原老君家——宋.戴复古《寄兴二首》
16.南山栋梁益稀少,爱材养育谁复议——唐.柳宗元《行路难》
17.试玉要烧三日满,辨材须待七年期——唐.白居易《放言》
18.世上岂无千里马,人中难得九方皋——宋.黄庭坚《过*舆怀李子先时在并州》
小学奥数牛吃草问题
奥数相对比较深,数学奥林匹克活动的蓬勃发展,极大地激发了广大少年儿童学*数学的兴趣,成为引导少年积极向上,主动探索,健康成长的一项有益活动。有许多涉及到实际应用的问题,如计数、图论、逻辑、抽屉原理等。解决这类问题,一般都需要对实际问题的数学意义进行分析、归纳,把实际问题抽象成为数学问题,然后用相应的数学知识和方法去解决。下面是小编整理的小学奥数牛吃草问题的内容,一起来看看吧。
有一个蓄水池装有9根水管,其中一根为进水管,其余8根为相同的出水管.进水管以均匀的速度不停地向这个蓄水池注水.后来有人想打开出水管,使池内的水全部排光(这时池内已注入了一些水).如果把8根出水管全部打开,需3小时把池内的水全部排光;如果仅打开5根出水管,需6小时把池内的水全部排光.问要想在4.5小时内把池内的水全部排光,需同时打开几个出水管?
考点:牛吃草问题.
分析:假设打开一根出水管每小时可排水“1份”,那么8根出水管开3小时共排出水8×3=24(份);5根出水管开6小时共排出水5×6=30(份);两种情况比较,可知3小时内进水管放进的水是30-24=6(份);进水管每小时放进的水是6÷3=2(份);在4.5小时内,池内原有的水加上进水管放进的水,共有8×3+(4.5-3)×2=27(份).由此解答即可.
解:设打开一根出水管每小时可排出水“1份”,8根出水管开3小时共排出水8×3=24(份);5根出水管开6小时共排出水5×6=30(份).
30-24=6(份),这6份是“6-3=3”小时内进水管放进的水.
(30-24)÷(6-3)=6÷3=2(份),这“2份”就是进水管每小时进的水.
[8×3+(4.5-3)×2]÷4.5
=[24+1.5×2]÷4.5
=27÷4.5
=6(根)
答:需同时打开6根出水管.
点评:此题属于牛吃草问题,解答关键是把打开一根出水管每小时可排水“1份”,进一步分析推理求解.
【第一篇】
有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。
一般方法:先假设1头牛1天所吃的牧草为1,那么就有:
(1)27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草和6天新长的草。)
(2)23头牛9天所吃的牧草为:23×9=207 (这207包括牧场原有的草和9天新长的草。)
(3)1天新长的草为:(207-162)÷(9-6)=15
(4)牧场上原有的草为:27×6-15×6=72
(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天)
所以养21头牛,12天才能把牧场上的草吃尽
公式解法:
(1)草的生长速度=(207-162)÷(9-6)=15
(2)牧场上原有草=(27-15)×6=72
再把题目中的21头牛分成两部分,一部分15头牛去吃新长的草(因为新长的草每天长15份,刚好可供15头牛吃,剩下(21-15=6)头牛吃原有草:72÷(21-15)=72÷6=12(天))所以养21头牛,12天才能把牧场上的草吃完。
方程解答:
设草的生长速度为每天x份,利用牧场上的原有草是不变的列方程,则有 27×6-6x =23×9-9x
解出x=15份
再设21头牛,需要x天吃完,同样是根据原有草不变的量来列方程: 27×6-6×15 =23×9-9×15=(21-15)x
解出x=12(天)
所以养21头牛。12天可以吃完所有的草。
【第二篇】
一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水?
分析 与解答这类问题,都有它共同的特点,即总水量随漏水的延长而增加.所以总水量是个变量.而单位时间内漏进船的水的增长量是不变的.船内原有的水量(即发现船漏水时船内已有的水量)也是不变的量.对于这个问题我们换一个角度进行分析。
如果设每个人每小时的淘水量为“1个单位”.则船内原有水量与3小时内漏水总量之和等于每人每小时淘水量×时间×人数,即1×3×10=30.
船内原有水量与8小时漏水量之和为1×5×8=40。
每小时的漏水量等于8小时与3小时总水量之差÷时间差,即(40-30)÷(8-3)=2(即每小时漏进水量为2个单位,相当于每小时2人的淘水量)。
船内原有的水量等于10人3小时淘出的总水量-3小时漏进水量.3小时漏进水量相当于3×2=6人1小时淘水量.所以船内原有水量为30-(2×3)=24。
如果这些水(24个单位)要2小时淘完,则需24÷2=12(人),但与此同时,每小时的漏进水量又要安排2人淘出,因此共需12+2=14(人)。
从以上这两个例题看出,不管从哪一个角度来分析问题,都必须求出原有的量及单位时间内增加的量,这两个量是不变的量.有了这两个量,问题就容易解决了。
【第三篇】
12头牛28天可以吃完10公亩牧场上全部牧草,21头牛63天可以吃完30公亩牧场上全部牧草.多少头牛126天可以吃完72公亩牧场上全部牧草(每公亩牧场上原有草量相等,且每公亩牧场上每天生长草量相等)?
分析 解题的关键在于求出一公亩一天新生长的草量可供几头牛吃一天,一公亩原有的草量可供几头牛吃一天。
12头牛28天吃完10公亩牧场上的牧草.相当于一公亩原来的牧草加上28天新生长的草可供33.6头牛吃一天(12×28÷10=33.6)。
21头牛63天吃完30公亩牧场上的牧草,相当于一公亩原有的草加上63天新生长的草可供44.1头牛吃一天(63×21÷30=44.l)。
一公亩一天新生长的牧草可供0.3头牛吃一天,即
(44.l-33.6)÷(63-28)=0.3(头)。
一公亩原有的牧草可供25.2头牛吃一天,即
33.6-0.3×28=25.2(头)。
有关数学的古诗
在日复一日的学*、工作或生活中,说到古诗,大家肯定都不陌生吧,古诗有四言、五言、七言、杂言等多种形式。其实很多朋友都不太清楚什么样的古诗才是好的古诗,以下是小编帮大家整理的有关数学的古诗,仅供参考,欢迎大家阅读。
宋代邵雍是数理大家,写过一首朗朗上口的数字诗,描写一路的.景物,全诗共20个字,把10个数字全用上了:
一去二三里,烟村四五家,
亭台六七座,八九十枝花。
这首诗用数字反映远*、村落、亭台和花,通俗自然,脍炙人口,也是我们小时候可能就听说过的一首诗,让人难忘啊。
明代林和靖写的一首雪梅诗,全诗用表示雪花片数的数量词写成。读后就好像身临雪境,飞下的雪片由少到多,飞入梅林,就难分是雪花还是梅花,妙趣横生。
一片二片三四片,五片六片七八片。
九片十片无数片,飞入梅中都不见。
清代纪晓岚是著名的才子,据说乾隆下江南时,一天在江上看见一条渔船荡桨而来,就叫纪晓岚以渔为题作诗一首,要求在诗中用上十个“一”字。纪晓岚很快吟出一首:
一篙一橹一渔舟,一个渔翁一钓钩,
一俯一仰一场笑,一人独占一江秋。
无独有偶,清代的女诗人何佩玉擅长作数字诗,也连用了十个“一”,生动地勾画了一幅高僧晚归图:
一花一柳一点矶,一抹斜阳一鸟飞。
一山一水一中寺,一林黄叶一僧归。
北宋王安石关心民生疾苦,看北宋王朝很多虚设的官员,饱食终日,于是写道:
一窝二窝三四窝,五窝六窝七八窝,
食尽皇家千钟粟,凤凰何少尔何多。
把他们比作麻雀,形象了地讽刺了他们反对变法的丑态。
**前,法币天天贬值,物价一日数长,一位教师这样描绘饥寒交迫的生活:
一身*价布,两袖粉笔灰。
三餐吃不饱,四季常皱眉。
五更就起床,六堂要你吹。
九天不发饷,十家皆断炊。
下面还有一些大家耳熟能详的数字入诗的佳句:
城阙辅三秦,风烟望五津。
烽火连三月,家书抵万金。
功盖三分国,名成八阵图。
千山鸟飞绝,万径人踪灭。
欲穷千里目,更上一层楼。
七八个星天外,两三点雨山前。
毕竟西湖六月中,风光不与四时同。
三顾频烦天下计,两朝开济老臣心。
飞流直下三千尺,疑是银河落九天。
梅须逊雪三分白,雪却输梅一段香。
*猿声啼不住,轻舟已过万重山。
故国三千里,深宫二十年。一声《何满子》,双泪落君前。
两个黄鹂鸣翠柳,一行白鹭上青天。窗含西岭千秋雪,门泊东吴万里船。
坐地日行八万里,巡天遥看一千河。
1、《山村咏怀》
(北宋)邵雍
一去二三里,烟村四五家,
亭台六七座,八九十枝花。
2、《大林寺桃花》
(唐)白居易
人间四月芳菲尽,山寺桃花始盛开。长恨春归无觅处,不知转入此中来。
3、《闺怨》
(清)黄焕中
百尺楼台万丈溪,云书八九寄辽西。
忽闻二月双飞雁,最恨三更一唱鸡。
五六归期空望断,七千离恨竟未齐。
初中数学解题思路
数学的本质活动是思维。思维的对象是概念,思维的方式是逻辑。下面小编就给大家讲讲初中数学解题思路,希望对大家有帮助。
2.图形语言,如几何的图形,函数的图象;
3.符号语言,即用数学符号表达的内容,比如AB∥CD。
在初中学段中,不仅要学好数学知识,同时也要注意数学思想方法的学*,掌握好思想和方法,对数学的学*将会起到事半功倍的良好效果。其中整体与分类、类比与联想、转化与化归和数形结合等不仅仅是学好数学的重要思想,同时对您今后的生活也必将起重要的作用。
先来看转化思想:
我们知道任何事物都在不断的运动,也就是转化和变化。在生活中,为了解决一个具体问题,不论它有多复杂,我们都会把它简单化,熟悉化以后再去解决。体现在数学上也就是要把难的问题转化为简单的问题,把不熟悉的问题转化为熟悉的问题,把未知的问题转化为已知的问题。
如方程的学*中,一元一次方程是学*方程的基础,那么在学*二元一次方程组时,可以通过加减消元和代入消元这样的手段把二元一次方程组转化为一元一次方程来解决,转化(加减和代入)是手段,消元是目的;在学*一元二次方程时,可以通过因式分解把一元二次方程转化为两个一元一次方程,在这里,转化(分解因式)是手段,降次是目的。把未知转化为已知,把复杂转化为简单。同样,三元一次方程组可以通过加减和代入转化为二元一次方程组,再转化为一元一次方程。在几何学*中,三角形是基础,可能通过连对角线等作辅助线的方法把多边形转化为多个三角形进行问题的解决。
所以,在数学学*和生活中都要注意转化思想的运用,解决问题,转化是关键。
二、初中数学学生必备的解题理念
1.如果把解题比做打仗,那么解题者的“兵器”就是数学基础知识,“兵力”就是数学基本方法,而调动数学基础知识、运用数学思想方法的数学解题思想则正是“兵法”。
2.数学家存在的主要理由就是解决问题。因此,数学的真正的组成部分是问题和解答。“问题是数学的心脏”。
3.问题反映了现有水*与客观需要的矛盾,对学生来说,就是已知和未知的矛盾。问题就是矛盾。对于学生而言,问题有三个特征:
(1)接受性:学生愿意解决并且具有解决它的知识基础和能力基础。
(2)障碍性:学生不能直接看出它的解法和答案,而必须经过思考才能解决。
(3)探究性:学生不能按照现成的的套路去解,需要进行探索,寻找新的处理方法。
4.练*型的问题具有教学性,它的结论为数学家或教师所已知,其之成为问题仅相对于教学或学生而言,包括一个待计算的答案、一个待证明的结论、一个待作出的图形、一个待判断的命题、一个待解决的实际问题。
5.“问题解决”有不同的解释,比较典型的观点可归纳为4种:
(1)问题解决是心理活动。面临新情境、新课题,发现它与主客观需要的矛盾而自己却没有现成对策时,所引起的寻求处理办法的一种活动。
(2)问题解决是一个探究过程。把“问题解决”定义为“将先前已获得的知识用于新的、不熟悉的情境的过程”。这就是说,问题解决是一个发现的过程、探索的过程、创新的过程。
(3)问题解决是一个学*目的。“学*数学的主要目的在于问题解决”。因而,学*怎样解决问题就成为学*数学的根本原因。此时,问题解决就独立于特殊的问题,独立于一般过程或方法,也独立于数学的具体内容。
(4)问题解决是一种生存能力。重视问题解决能力的培养、发展问题解决的能力,其目的之一是,在这个充满疑问、有时连问题和答案都是不确定的世界里,学*生存的本领。
6.解题研究存在一些误区,首先一个表现是,用现成的例子说明现成的观点,或用现成的观点解释现成的例子。其次一个表现是,长期徘徊在一招一式的归类上,缺少观点上的提高或实质性的突破。第三个表现是,多研究“怎样解”,较少问“为什么这样解”。在这些误区里,“解题而不立法、作答而不立论”。
7.人的思维依赖于必要的知识和经验,数学知识正是数学解题思维活动的出发点与凭借。丰富的知识并加以优化的结构能为题意的本质理解与思路的迅速寻找创造成功的条件。解题研究的一代宗师波利亚说过:“货源充足和组织良好的知识仓库是一个解题者的重要资本”。
8.熟练掌握数学基础知识的体系。对于中学数学解题来说,应如数学家珍说出教材的概念系统、定理系统、符号系统。还应掌握中学数学竞赛涉及的基础理论。深刻理解数学概念、准确掌握数学定理、公式和法则。熟悉基本规则和常用的方法,不断积累数学技巧。
9.数学的本质活动是思维。思维的对象是概念,思维的方式是逻辑。当这种思维与新事物接触时,将出现“相容”和“不容”的两种可能。出现“相容”时,产生新结果,且被原概念吸收,并发展成新概念;当出现“不容”时,则产生了所谓的问题。这时,思维出现迂回,甚至暂时退回原地,将原概念扩大或将原逻辑变式,直到新思维与事物相容为止。至此,也产生新的结果,也被原思维吸收。这就是一个思维活动的全过程。
10.解题能力,表现于发现问题、分析问题、解决问题的敏锐、洞察力与整体把握。其主要成分是3种基本的数学能力(运算能力、逻辑思维能力、空间想象能力),核心是能否掌握正确的思维方法,包括逻辑思维与非逻辑思维。其基本要求包括:
(1)掌握解题的科学程序;
(2)掌握数学中各种常用的思维方法,如观察、试验、归纳、演绎、类比、分析、综合、抽象、概括等;
(3)掌握解题的基本策略,能“因题制宜”地选择对口的解题思路,使用有效的解题方法、调动精明的解题技巧;
(4)具有敏锐的直觉。应该明白,我们的数学解题活动是在纵横交错的数学关系中进行的,在这个过程中,我们从一种可能性过渡到另一种可能性时,并非对每一个数学细节都洞察无遗,并非总能借助于“三段论”的桥梁,而是在短时间内朦胧地插上幻想的翅膀,直接飞翔到最*的可能性上,从而达到对某种数学对象的本质领悟:
11.解题具有实践性与探索性的特征,“就像游泳,滑雪或弹钢琴一样,只能通过模仿和实践来学到它……你想学会游泳,你就必须下水,你想成为解题的能手,你就必须去解题”,“寻找题解,不能教会,而只能靠自己学会”。
12.所谓解题经验,就是某些数学知识、某些解题方法与某些条件的有序组合。成功是一种有效的有序组合,失败是一种无效的无序组合(它从反面向我们提供有效的有序组合)。成功经验所获得的有序组合,就好像建筑上的预制构件(或称为思维组块),遇到合适的场合,可以原封不动地把它搬上去。
13.认为解题纯粹是一种智能活动显然是错误的;决心与情绪所起的作用非常重要。教育学生解题是一种意志教育。当学生求解那些对他来说并不太容易的题目时,他学会了败而不馁,学会了赞赏微小的进展,学会了等待主要念头的萌动,学会了当主要念头出现后如何全力以赴,直扑问题的核心或主干;当一旦突破关卡,如何去占领问题的至高点,并冷静地府视全局,从而得到问题的完善解决。如果学生在解题过程中没有机会尝尽为求解而奋斗的喜怒哀乐,那么他的数学解题训练就在最重要的地方失败了。
14.教师的例题教学要暴露自己思维的真实过程,老师备课时,遇上的曲折和错误不能随草纸扔到废纸堆。如果教师掩瞒了解题中的曲折,自己在讲台装神弄巧,得心应手,左右逢源,把自己打扮成超人,将给学生的学*产生误导。这样的教师越高明,学生越自卑。
三、浅议初中生数学学*差的原因
初中阶段学生数学学*成绩两极分化非常严重,学*差的学生占的比例较大,特别在初中二年级表现得尤为明显。那么,造成两极分化比较严重的原因是什么?如何预防严重分化?本文结合自己的教学实践作一些粗浅的探讨。
一、造成分化的原因
1、被动学*。
许多同学进初中入后,还像小学那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学*主动权。表现在不定计划,坐等上课,课前没有预*,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”。
2、学不得法。
老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。
3、不重视基础。
一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学*与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水*”,好高鹜远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。
4、思维方式和学*方法不适应数学学*要求。
初二阶段是数学学*分化最明显的阶段。一个重要原因是初中阶段数学课程对学生抽象逻辑思维能力要求有了明显提高。而初二学生正处于由直观形象思维为主向以抽象逻辑思维为主过渡的又一个关键期,没有形成比较成熟的抽象逻辑思维方式,而且学生个体差异也比较大,有的抽象逻辑思维能力发展快一些,有的则慢一些,因此表现出数学学*接受能力的差异。除了年龄特征因素以外,更重要的是教师没有很好地根据学生的实际和教学要求去组织教学活动,指导学生掌握有效的学*方法,促进学生抽象逻辑思维的发展,提高学*能力和学*适应性。
二、减少学*分化的教学对策
1、培养学生学*数学的兴趣兴趣是推动学生学*的动力,学生如果能在学*数学中产生兴趣,就会形成较强的求知欲,就能积极主动地学*。培养学生数学学*兴趣的途径很多,如让学生积极参与教学活动,并让其体验到成功的愉悦;创设一个适度的学*竞赛环境;发挥趣味数学的作用;提高教师自身的教学艺术等等。
2、教会学生学*
(1)加强学法指导,培养良好学**惯反复使用的方法将变**们的*惯行为。什么是良好的学**惯?我向学生做了如下具体解释,它包括制定计划、课前自学、专心上课、及时复*、独立作业、解决疑难、系统小结和课外学*几个方面。
(2)制定计划使学*目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学*和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学*意志。
语文古诗中的数学问题
古诗中的数学问题
在古诗中的数学问题
带数学问题的古诗
古诗诗歌中的数学问题
古诗里的数学问题
有数学问题的古诗
古诗中的数学问题实践图片
解决古诗中的数学问题及答案
古诗中的数学问题并带有解答
关于有数学问题的古诗
可以提出数学问题的古诗
含有数学问题的古诗10首
古诗词中的寺塔高数学问题
有学问的语文古诗
古诗词中的科学问题
古诗中的分数应用题问题
小学古诗教学问题的成因
语文古诗词遇到的问题
五下语文古诗三首的问题
古诗中的数学题及答案
初中语文古诗文的问题以对策
古诗中的数学文化
古诗中有关数学的题目
古诗中的行程问题
古诗中的刑法问题
古诗中的趣味问题
古诗中偶见的问题
古诗中的数学圆
古诗中蕴含的问题