关于蕴含数学因数的古诗的文字专题页,提供各类与蕴含数学因数的古诗相关的句子数据。我们整理了与蕴含数学因数的古诗相关的大量文字资料,以各种维度呈现供您参考。如果蕴含数学因数的古诗未能满足您的需求,请善用搜索找到更适合的句子语录。
数学公倍数和公因数的知识点
公倍是指在两个或两个以上的自然数中,如果它们有相同的倍数,这些倍数就是它们的公倍数。公倍数中最小的,就称为这些整数的最小公倍数,以下是小编为大家整理的数学公倍数和公因数的知识点,仅供参考,希望能够帮助大家。
1、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。
一个数最大的因数等于这个数最小的倍数。
2、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,用符号[ ,]表示。几个数的公倍数也是无限的。
3、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,用符号( , )。两个数的公因数也是有限的。
4、两个素数的积一定是合数。举例:35=15,15是合数。
5、两个数的最小公倍数一定是它们的最大公因数的倍数。举例:[6,8]=24,(6,8)=2,24是2的倍数。
6、求最大公因数和最小公倍数的方法:
倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的.数。举例:15和5,[15,5]=15,(15,5)=5
素数关系的两个数,最大公因数是1,最小公倍数是它们的乘积。举例:[3,7]=21,(3,7)=1
一个素数和一个合数,最大公因数是1,最小公倍数是它们的乘积。[5,8]=40,(5,8)=1
相邻关系的两个数,最大公因数是1,最小公倍数是它们的乘积。[9,8]=72,(9,8)=1
特殊关系的数(两个都是合数,一个是奇数,一个是偶数,但他们之间只有一个公因数1),比如4和9、4和15、10和21,最大公因数是1,最小公倍数是它们的乘积。
一般关系的两个数,求最大公因数用列举法或短除法,求最小公倍数用大数翻倍法或短除法。(详见课本31页内容)
一、公因数和最大公因数
概念:几个数公有的因数,叫做这几个数的公因数;其中最大的一个,叫做这几个数的最大公因数。
12的因数有:1,2,3,4,6,12
18的因数有:1,2,3,6,9,18
12和18的公因数有:1,2,3,6
12和18的最大公因数是: 6 记作:(12,18)=6
二、公倍数和最小公倍数
概念:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
12的倍数有:12,24,36,48,60……
18的倍数有:18,36,54,72,90……
12和18的公倍数有:36,72……
12和18的最小公倍数是:36 记作:[12,18]=36
《因数和倍数》数学练*题
《因数与倍数》小学教案 篇3 课前思考: 1.概念揭示变逻辑演绎为活动建构。以下是小编帮大家整理的《因数和倍数》数学练*题,欢迎大家分享。
一、填空
(1)用12个边长是1cm的小正方形摆一个长方形,你会几种摆法?
①可以摆成长是()厘米,宽是()厘米的长方形,即()×()=12。
②也可以摆成长是()厘米,宽是()厘米的长方形,即()×()=12。
③还可以摆成长是()厘米,宽是()厘米的长方形,即()×()=12。
以上所填的都是12的(),12是这些数的()。
(2)如果a×b=c(a、b、c是不为0的整数),那么,c是()和()的倍数,a和b是c的()
如果A、B是两个整数(B≠0),且A÷B=2,那么A是B的(),B是A的()。
(3)在1、6、7、12、14、49这六个数中,是7的倍数的数有()
(4)12的因数有()
4的倍数有()(从小到大写5个),一个数的倍数的个数是()
(5)在1,2,3,6,9,12,15,24中,6的因数有(),6的倍数有()。
(6)一个数,它的因数的个数是(),其中最小的一个因数是(),最大的一个因数是()。
(7)6的因数有(),6的倍数有()(写5个),6既是6的(),又是6的( )。
二、判断
(1)一个数的因数的个数是无限的,而倍数的个数是有限的( )
(2)因为7×8=56,所以56是倍数,7和8是因数( )
(3)14比12大,所以14的因数比12的因数多( )
(4)1是1,2,3,4,5…的因数()
(5)一个数的最小因数是1,最大因数是它本身。
(6)一个数的最小倍数是它本身()
一、判断
1. 1是奇数也是质数。()
2. 所有的偶数都是合数。()
3. 18的因数有6个,18的倍数有无数个。()
4. 一个数是6的倍数,这个数一定是2和3的倍数。()
5. 两个奇数的和是偶数,两个奇数的积是合数。()
6. 因为217=3,所以21是倍数,7是因数。()
7. 一个自然数越大,它的因数个数就越多。()
8. 连续三个自然数的和一定是3的倍数。()
9. 一个数的倍数总比它的因数大。()
10.一个自然数不是质数就是合数。()
二、选择
1.13的倍数是()
① 合数 ②质数 ③可能是合数,也可能是质数
2.2是(),但不是()。
① 合数 ② 质数 ③ 偶数
3.4的倍数都是()的倍数。
① 2 ② 3③ 8
4.甲数是乙数的倍数,丙数是乙数的因数,那么甲数是丙数的()
① 倍数② 因数③ 无法确定
5.如果□37是3的倍数,那么□里可能是( )。
① 2、5 ② 5、8 ③ 2、5、8
6.如果用a表示非零自然数,那么偶数可以表示为()。
①a+2② 2a③a-1④2a-1
7.一个正方形的边长是一个质数,这个正方形的周长一定是()。
① 合数② 奇数③ 质数
8.相邻两个自然数的积一定是()。
① 质数② 合数 ③ 奇数④偶数
关于因数与倍数的数学知识点
在学*中,大家对知识点应该都不陌生吧?知识点有时候特指教科书上或考试的知识。想要一份整理好的知识点吗?下面是小编整理的关于因数与倍数的数学知识点,欢迎阅读,希望大家能够喜欢。
因数与倍数
具体内容重点知识学生的实际学*困难
因数和倍数
1.因数和倍数的意义:如果ab=c(a、b、c都不为0的整数),那么a、b就是c的因数,c就是a、b的倍数。
2.数与倍数的关系:因数和倍数是两个不同的该概念,但又是一对相互依存的概念,不能单独存在。
3.找一个数的因数的'方法:
(1)列乘法算式:根据因数的意义,有序地写出两个乘积是此数的所有乘法算式,乘法算式中每个因数就是该数的因能数。
(2)列除法算式:用此数除以大于1等于1而小于等它本身的整数,所得的商是整数而无余数,这些除数和商都是该数的因数。
4.找一个数的倍数的方法:求一个数的倍数,就是用这个数,依次与非零自然数相乘,所得之数就是这个数的倍数。
2、3、5的倍数的特征1.2的倍数的特征:个位上是0、2、4、6、8的数都是2的倍数。
2.奇数和偶数的意义:在自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。
3.奇数、偶数的运算性质:奇数奇数=偶数,偶数偶数=偶数,奇数偶数=奇数(大减小),奇数奇数=奇数,奇数偶数=偶数,偶数偶数=偶数。
4.5的倍数的特征:个位上是0或5的数都是5的倍数.
5.3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
质数和合数1.质数和合数的意义:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
2.质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的质因数。
3.分解质因数:把一个合数用质数相乘的形式表是出来,就是分解质因数。
4.分解质因数的方法:(1):树枝图式分解法;(2)短除法分解。
拓展知识:因数与倍数
1. 因数和倍数:在整数除法中,如果商是整数而且没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
2. 因数和倍数是相互依存的。例如:12÷2=6,我们说12是2的倍数,2是12的因数。
3. 一个数的最小因数是1,最大因数是它本身,因数的个数是有限的。
4. 一个数的最小倍数是它本身,没有最大倍数,倍数的个数是无限的。
5. 2、3、5的倍数特征
① 2的倍数特征:个位是0、2、4、6、8
② 5的倍数特征:个位是0或5
③ 3的倍数特征:各个数位上的和是3的倍数,这个数就是3的倍数
6. 整数中,2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。 0是最小的偶数; 1是最小的奇数。
7. 偶数+偶数=偶数 偶数+奇数=奇数 奇数+奇数=偶数
偶数×偶数=偶数 偶数×奇数=偶数 奇数×奇数=奇数
非学无以广才,非志无以成学。 工欲善其事,必先利其器。 过犹不及……下面是小编为大家整理的蕴含哲理的古诗,希望大家喜欢。
1、《题西林壁 》
宋·苏轼
横看成岭侧成峰,远*高低各不同。
不识庐山真面目,只缘身在此山中。
2、《观祈雨 》
唐·李约
桑条无叶土生烟,萧管迎龙水庙前。
朱门几处耽歌舞,犹恐春阴咽管弦。
3、《潍县署中画竹 》
清·郑燮
衙斋卧听萧萧竹,疑是民间疾苦声。
些小吾曹州县吏,一枝一叶总关情。
4、《琴诗 》
宋·苏轼
若言琴上有琴声,放在匣中何不鸣?
若言声在指头上,何不于君指上听?
5、《戏为六绝句(之一) 》
唐·杜甫
庾信文章老更成,凌云健笔意纵横。
今人嗤点流传赋,不觉前贤畏后生。
6、《八阵图 》
唐·杜甫
功盖三分国,名成八阵图。
减流石不转,遗恨失吞吴。
7、《观书有感 》
宋·朱熹
半亩方塘一鉴开,天光云影共徘徊。
问渠那得清如水?为有源头活水来。
8、《拟古 》
明·钱宰
长江东流去,来者方不息。
白日没西山,晨光还奕奕。春花瘁复荣。秋草黄已碧。造化无停机,循环岂终极?人生天壤间,少壮须努力!
9、《论诗 》
清·赵翼
李杜诗篇万古传,至今已觉不新鲜。
江山代有才人出,各领风骚数百年。
10、《草 》
唐·白居易
离离原上草,一岁一枯荣。
野火烧不尽,春风吹又生。远芳侵古道,晴翠接荒城。又送王孙去,萋萋满别情。
11、《雪梅 》
宋·卢梅坡
梅雪争春未肯降,骚人阁笔费评章。
梅须逊许雪三分白,雪却输梅一段香。
12、《惠崇春江晓景 》
宋·苏轼
竹外桃花三两枝,春江水暖鸭先知。
萎篙满地芦芽短,正是河欲上时。
13、《咏史 》
唐·高适
五年级数学因数和倍数的知识点
在*日的学*中,大家都背过各种知识点吧?知识点也可以通俗的理解为重要的内容。为了帮助大家更高效的学*,以下是小编为大家收集的五年级数学因数和倍数的知识点,希望对大家有所帮助。
1、整除:被除数、除数和商都是自然数,并且没有余数。
大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的倍数的个数是无限的,最小的倍数是它本身。
2、自然数按能不能被2整除来分:奇数偶数
奇数:不能被2整除的数
偶数:能被2整除的数。
最小的奇数是1,最小的偶数是0.
个位上是0,2,4,6,8的数都是2的倍数。
个位上是0或5的数,是5的倍数。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
能同时被2、3、5整除的最大的两位数是90,最小的三位数是120。
3、自然数按因数的个数来分:质数、合数、1.
质数:有且只有两个因数,1和它本身
合数:至少有三个因数,1、它本身、别的因数
1:只有1个因数。“1”既不是质数,也不是合数。
最小的质数是2,最小的合数是4。
20以内的质数:有8个(2、3、5、7、11、13、17、19)
100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、
43、47、53、59、61、67、71、73、79、83、89、97
4、分解质因数
用短除法分解质因数(一个合数写成几个质数相乘的形式)例:12=2×2×3
学好数学就需要*时的积累。知识积累越多,掌握越熟练,编辑了五年级数学知识点:长方体和正方体,欢迎参考!
1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。在一个长方体中,相对面完全相同,相对的棱长度相等。
2、两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。正方体有12条棱,它们的长度都相等,所有的.面都完全相同。
4、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
5、长方体有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。正方体有6个面,每个面都是正方形,每个面的面积都相等,有12条棱,每条的棱的长度都相等。
长方体的棱长总和=(长+宽+高)×4L=(a+b+h)×4
长=棱长总和÷4-宽-高a=L÷4-b-h
宽=棱长总和÷4-长-高b=L÷4-a-h
高=棱长总和÷4-长-宽h=L÷4-a-b
正方体的棱长总和=棱长×12L=a×12
正方体的棱长=棱长总和÷12a=L÷12
6、长方体或正方体6个面和总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)
无底(或无盖)长方体表面积=长×宽+(长×高+宽×高)×2
S=2(ab+ah+bh)-abS=2(ah+bh)+ab
无底又无盖长方体表面积=(长×高+宽×高)×2S=2(ah+bh)
正方体的表面积=棱长×棱长×6S=a×a×6
7、物体所占空间的大小叫做物体的体积。
长方体的体积=长×宽×高V=abh
长=体积÷宽÷高a=V÷b÷h
宽=体积÷长÷高b=V÷a÷h
高=体积÷长÷宽h=V÷a÷b
正方体的体积=棱长×棱长×棱长V=a×a×a
8、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。
常用的容积单位有升和毫升也可以写成L和ml。
1升=1立方分米1毫升=1立方厘米1升=1000毫升
1、《题西林壁》
宋·苏轼
横看成岭侧成峰,远*高低各不同。
不识庐山真面目,只缘身在此山中。
2、《观祈雨》
唐·李约
桑条无叶土生烟,萧管迎龙水庙前。
朱门几处耽歌舞,犹恐春阴咽管弦。
3、《潍县署中画竹》
清·郑燮
衙斋卧听萧萧竹,疑是民间疾苦声。
些小吾曹州县吏,一枝一叶总关情。
4、《琴诗》
宋·苏轼
若言琴上有琴声,放在匣中何不鸣?
若言声在指头上,何不于君指上听?
5、《戏为六绝句(之一)》
唐·杜甫
庾信文章老更成,凌云健笔意纵横。
今人嗤点流传赋,不觉前贤畏后生。
6、《八阵图》
唐·杜甫
功盖三分国,名成八阵图。
减流石不转,遗恨失吞吴。
7、《观书有感》
宋·朱熹
半亩方塘一鉴开,天光云影共徘徊。
问渠那得清如水?为有源头活水来。
8、《拟古》
明·钱宰
长江东流去,来者方不息。
白日没西山,晨光还奕奕。
春花瘁复荣。秋草黄已碧。
造化无停机,循环岂终极?
人生天壤间,少壮须努力!
9、《论诗》
清·赵翼
李杜诗篇万古传,至今已觉不新鲜。
江山代有才人出,各领风骚数百年。
10、《草》
唐·白居易
离离原上草,一岁一枯荣。
野火烧不尽,春风吹又生。
远芳侵古道,晴翠接荒城。
又送王孙去,萋萋满别情。
11、《雪梅》
宋·卢梅坡
梅雪争春未肯降,骚人阁笔费评章。
梅须逊许雪三分白,雪却输梅一段香。
12、《惠崇春江晓景》
宋·苏轼
蕴含哲理的古诗句
在日常学*、工作抑或是生活中,大家都收藏过自己喜欢的诗句吧,诗句是组成诗词的.句子。你知道什么样的诗句才能算得上是好的诗句吗?下面是小编为大家整理的蕴含哲理的古诗句,欢迎阅读与收藏。
非学无以广才,非志无以成学。
工欲善其事,必先利其器。
海日生残夜,江春入旧年。
黑发不知勤学早,白发方悔读书迟。
横看成岭侧成峰,远*高低各不同。
君子坦荡荡,小人长戚戚。
君子欲衲于言,而敏于行。
君子喻于义,小人喻于利。
立身以立学为先,立学以读书为本。
立志宜思真品格,读书须尽苦功夫。
烈士暮年,壮心不已。
路漫漫其修道远,吾将上下而求索。
敏而好学,不耻下问。
书犹药也,善读之可以医愚。
熟读唐诗三百首,不会作诗也会吟。
温故而知新,可以为师矣。
问渠那得清如许,为有源头活水来。
吾生也有涯,而知也无涯。
益者三友,损者三友。友直,友谅,友多闻,益矣;友便辟,友善柔,友便佞,损矣。
有颜回者好学,不迁怒,不贰过。
玉不啄,不成器;人不学,不知道。
欲穷千里目,更上一层楼。
欲速则不达,见小利则大事不成。
知者不惑,仁者不忧,勇者不惧。
知者乐水,仁者乐山。知者动,仁者静。知者乐,仁者寿。
知之为知之,不知为不知,是知也。
1、瓜田不纳履,李下不正冠。——汉乐府民歌《君子行》
2、寅父犹能畏后生,丈夫未可轻少年。——李白《上李邕》
3、采得百花成蜜后,为谁辛苦为谁甜。——罗隐《蜂》
4、天生我材必有用,千金散尽还复来。——李白《将进酒》
5、天若有情天亦老。——李贺《金铜仙人辞汉歌》
6、宣父犹能畏后生,丈夫未可轻年少。——李白《上李邕》
7、龟灵未免刳肠患,马失应无折足忧。——白居易《放言五首·其二》
8、人生如寄,何事辛苦怨斜晖。——朱熹《水调歌头·隐括杜牧之齐山诗》
9、虑澹物自轻,意惬理无违。——谢灵运《石壁精舍还湖中作》
10、松树千年终是朽,槿花一日自为荣。——白居易《放言五首·其五》
11、沉舟侧畔千帆过,病树前头万木春。——刘禹锡
12、一湾死水全无浪,也有春风摆动时。——戴善夫《陶学士醉写风光好杂剧》
13、古人今人若流水,共看明月皆如此。——李白《把酒问月·故人贾淳令予问之》
14、人生亦有命,安能行叹复坐愁?——鲍照《拟行路难·其四》
15、等闲识得东风面,万紫千红总是春。——朱熹《春日》
16、春种一粒粟,秋收万颗子。——李绅《悯农》
17、故不登高山,不知天之高也;不临深溪,不知地之厚也;——荀子《劝学》
18、先天下之忧而忧,后天下之乐而乐——范仲淹《岳阳楼记》
19、草木有本心,何求美人折!——张九龄《感遇十二首·其一》
20、山重水复疑无路,柳暗花明又一村。——陆游《游山西村》
21、家国兴亡自有时,吴人何苦怨西施。——罗隐《西施》
22、少年易学老难成,一寸光阴不可轻。——朱熹《偶成》
23、衰兰送客咸阳道,天若有情天亦老。——李贺《金铜仙人辞汉歌》
因数和倍数评课稿(精选5篇)
评课,顾名思义,即评价课堂教学。是在听课活动结束之后的教学延伸。对其执教教师的课堂教学的得失,成败进行评议的一种活动,下面是小编收集整理的因数和倍数评课稿(精选5篇),希望大家喜欢。
这是一节概念课,关于“倍数和因数”教材中没有写出具体的数学意义,只是借助乘法算式加以说明,进而让学生探究寻找一个数的倍数和因数。
听了X老师执教的《倍数和因数》,总体感觉本节课的教学中规中矩,目标基本达成、重点突出、难点突破、教法灵活、学法指导较到位、小组活动有效,在“因数和倍数”概念的学*过程中,重视师生情感的交流,注重每个学生的发展,较好地体现了“教师有效引导下学生自主探索”这一教学策略,遗憾的是教学时间分配不够合理。
1、意义教学引导学生自主构建
在多次的实践教学中,发现用12个完全相同的小正方形拼出一个长方形。对于四年级的学生来说非常容易。教材这样安排的目的,在于帮助学生有意识地感受1和12、2和6、3和4这几组数之间的有机联系。
本课中,倍数和因数的意义教学分三个层次:
①借助三个问题让学生通过实践操作,想像及大屏幕的直观演示,引导学生得出三道乘法算式,同时介绍倍数和因数的含义。
②通过除法算式找因倍关系。
③渗透倍数和因数的相互依存性。
2、寻找一个数的因数和倍数的方法让学生自己生成
在寻找一个数的因数和倍数的过程中。教师将学生推向发现与探索的前台,寻找一个数的倍数和因数,方法不是惟一的。教师在肯定各种方法合理性的同时,及时引导学生进行沟通,寻找它们的共同点和联系,进而比较各种方法之间的优劣,遴选最优方法,提升思维效率。
3、合理组织教材
寻找一个数的因数是本节课的教学难点,学生往往满足于答案的寻找,而忽视寻找过程中的思考策略及思维方法。
教学中,教师独具匠心,采用列表的方法找2、3、5的倍数,让学生概括一个数倍数的特征,并在此基础上学*一个数因数的特征,这样的改变,既达到预定目的,又为学*找因数做了铺垫,引发了学生寻找36的因数的浓厚兴趣。在汇报时,重点解决如何有序、不重复、不遗漏地找出一个数的因数。这样安排既留足了自主探究的空间,又在方法上有所引导,避免了学生的盲目猜测。在引导学生自主探索一个数的因数的特征时,教师让学生带着问题去观察讨论:每一个非零自然数的因数的个数是有限的还是无限的?一个非零自然数的最大因数是几?一个非零自然数的最小因数是几?以上安排,降低了学生的学*难度。
4、增强游戏中数学思维的含量
本节课以“有效引导下自主探索”为教学策略。以三道乘法算式为线索,以教材文本为依托,以有梯度的活动展开对知识的深化巩固,并适时、适量引入多媒体辅助教学,将诸多细小的认知活动归整在一个探究性的课堂自主研究活动中。通过自主观察、交流发现、共同分享,引领学生经历“研究与发现”的真实过程。课尾游戏的运用,激发了学生的学*热情,让学生以愉快的心情和良好的体验融入学*活动中,培养了学生用数学眼光看待游戏的`意识,大大降低了学生对数学概念学*的枯燥体验,让知识在游戏中深化,在挑战中升华。
两点建议:
1、要精心设计由易到难、由浅入深的练*促进理解,巩固新知,发展思维。由于时间分配不够合理,未能体现出练*的层次性。
2、反馈渠道要畅通。要注重课堂反馈,找2和5的倍数反馈时不少学生只停留在乘法算式层面,说明教学找3的倍数时学法指导还不够到位。
《因数和倍数》这一堂课在各个版本中的内容和学*目标都存在着差异。今天听了《因数和倍数》的不同上法,结合自己先前对教材的认识与设计,现在比较着来谈谈听完课后的一些感想。
1、新旧链接,揭示概念。
支老师在充分估计学生思维能力的基础上,运用已有的数学知识,让学生建立了“因数与倍数”的概念。如:课的开始,支老师从操作活动把12个小正方形摆成不同的长方形引入,同时训练孩子的空间思维能力,在不动手操作的情况下,用一个简单的算式表达自己的思维过程。让学生说出不同的乘法算式,从而导出倍数和因数的概念。在概念的揭示过程中。让学生自主体验数与形的结合,进而形成因数与倍数的意义。如当得出2×6=12时,引导学生充分练说,“12是6的倍数,12也是2的倍数,6和2都是12的因数”,让学生读读、想想这几句话的意思,初步感受倍数和因数的意义是与乘法有联系的,表达的是自然数之间的关系;接着要求学生根据12×1=12、3×4=12说说哪一个数是哪一个数的倍数(或因数),在迁移中进一步认识倍数和因数的意义。其中12是12的因数、1是12的因数,12是12的倍数等特例,为后面的教学扫除难点。这一环节借助有意义的操作和想象活动,由形到数,再由数到形,学生自主体验其中的因倍关系,为倍数因数概念的引入打下了坚实的基础,数形结合的思想得到了较好的体现。
2、找准机会,渗透方法。
在新知教学中,支老师注重学生的探究,渗透数学思想方法的教学,发展思维。本节课中找一个数的倍数和因数,都有比较好的方法。如何通过学生的探究找到方法,成了教学的亮点。如“找36的因数”,应该说,找出36的几个因数并不难,难就难在找出36的所有因数。36有9个因数,如何有序地一个不漏地找出36的因数,我觉得对于刚刚认识因数概念的学生来说有一定的难度。教学中,支老师并没有急切地认定结果,也没有把方法简单地告诉学生,而是让学生独立探究,在作业纸上独立写出36的所有因数,教师则及时巡视并请学生将各种情况反馈在投影上。有用乘法找的,(有用除法找的,)有有序找的,也有无序找而有遗漏的。教师引导学生对(有序和无序找的)各种方法作了比较,学生在比较、交流中感悟到有序思考的必要性和科学性。这是本节课新知探究阶段的思维交流。既是不断深化理解因数与倍数知识的过程,又是培养学生良好思维品质的过程。给学生独立思考的空间,提出了各自的解法或见解,是思维独创性的培养;引导学生一对一对有序的找,或从1开始,用除法一个个去试,是思维条理性的培养;既有迁移于摆方块的形象思维,又有直接运用除法算式的抽象思维,或乘除法口诀的综合运用等,在感受解法多样性中,培养了学生思维的灵活性。在这里教师继续提问学生“找到什么时候停?”让学生自然得出:找到两个因数非常接*时就不用再找了。这样一来对学生又是一个知识层面上的提高。
《因数和倍数》这一堂课在各个版本中的内容和学*目标都存在着差异。今天听了《因数和倍数》的不同上法,结合自己先前对教材的认识与设计,现在比较着来谈谈听完课后的一些感想。
首先我说说这两堂课教学内容上的差异。第一堂课安排的教学内容有三部分。第一部分是认识因数和倍数,指导学生正确描述因数和倍数。其次安排的教学内容是找一个数的因数和倍数。第三部分是了解因数和倍数以及一个数的最大因数和最小倍数的特性。第二堂课先建立了整除的概念,理清除尽和整除之间的关系,然后在整除的基础上认识因数和倍数,最后让学生学会描述因数和倍数。(即4句话:谁能被谁整除,谁能整除谁,谁是谁的倍数,谁是谁的约数。)
接着我来说说自己的想法。
第一堂课的上法比较严谨,通过教师的传授和学生的练*,相信大多数学生都能认识因数和倍数并能正确描述,同时也会找一个数的因数和倍数,能根据因数和倍数的特性解决问题。完成了本课的技能目标。在课中,教师让学生说得很充分,并有针对性的进行了练*,使学生扎实地掌握了知识,为后续的学*打下了结实的基础。
在这一课的导入中,教师用乘算式,让学生先说一说各部分的名称,然后对7×3=21给出描述性的语句“我们说7是21的因数,3也是21的因数;21是7的倍数,21也是3的倍数。”这个导入,除了在乘法里出现了因数这个词和本课内容有关联外,其他关系并不大,用这样的练*作为切入点,它的用处并没有体现。
其次,教师对学生提醒:“我们说的因数和倍数一般指的是整数,不包括0”,在这里,我觉得教师给出的定义一定要准确“我们说的因数和倍数都是指“0”以外的自然数。”说到这个0是否除外的问题,人教论坛上还有争议,因此对这个问题暂不考虑。在判断是否能说倍数和因数的练*题中,对于加和减题是否能说倍数和因数的判断,我觉得没有存在的必要。在这里教师设计的题“判断8÷4=2,4和2是8的因数,8是4和2的倍数这句话的对错”很有价值,让学生感悟到不管是根据乘法还是除法算式都可以找到因数和倍数。
第三,在找36的因数中,教师对找的方法进行了指导,要一对一对有序地找。在这里教师可以继续提问学生“找到什么时候停?”让学生自然得出:找到两个因数非常接*时就不用再找了。这样一来对学生又是一个知识层面上的提高。
第四,在最后的巩固练*中,有一题讲到一个数的最大因数和最小倍数的和是20,问学生这个数是多少。这题是学生对因数和倍数特性的反馈,在这题完成后,我想到了一个练*题“一个数最小的倍数是18,找出这个数的其他因数”,这样整合特性和找一个数的因数这两个知识点。还有一题在数轴上面标出3的倍数,在数轴下面标出4的倍数,这里出现共同的点,这样的话能否对公倍数适当地提点一下呢?让学生留点疑问结束课堂教学,为后一课的学*埋下伏笔。
第二堂课的开始教师比较开放,让学生想一个除法算式,然后把这些出发算式归类,分类出除不尽和除尽,在除尽里再分出整除。这里充分发挥了学生的主体作用,教学的素材来源于学生自己,提高了学生的学*积极性。在对除尽的区分中,教师让学生用语言来描述除尽,我觉得对学生来说只要会辨别就行了,不需要要准确的语言去定义概念。教师给出的整除的概念不够严密,既然没有向学生说明整除所说的数都不包括0,那么在定义给出时,应向学生说明除0以外的自然数。
《因数和倍数》整节课简明清晰,教师语言精练,始终为学生创造宽松的学*氛围。课前交流渗透人与人之间的关系,亲切,有效,让学生先在脑海中留下“相互依存”这种印象。为后面教学因数和倍数的概念,不能单独存在埋下伏笔。在教学中引导学生观察除法算式,放手让学生根据计算结果,按一定的标准给算式分类,在此基础上引出概念;结合算式,让学生说一说每个算式中谁是谁的因数,谁是谁的倍数,让学生在交流中掌握概念,进一步体会“因数与倍数是相互依存的”,突破了重难点。接着通过引导学生用一个式子来表示这样的除法算式,进而用字母陈述概念,帮助学生理解因数与倍数的本质意义,体会数学语言简单明了、高度概括的特点。
练*设计体现了基础性、层次性和发展性。既巩固了对因数和倍数概念的理解,又把“倍数”与“几倍”,“因数”与乘法各部分名称的区别进行了辨析,很好地理解和巩固了概念。
在学生的学*过程中,老师适时进行有效的评价,对小学生知识技能掌握和情感态度的发展有积极影响。整节课缺乏教师的即时性评价,对学生的行为表现没有给予及时的鼓励、调控和引导,特别是在学生回答出因数和倍数的相互依存关系,用“被除数÷除数=商”和“a÷b=c”表示这一类除法算式时,教师如果能适时地点拨激励,对于学生深入思考、增强自信心、激发学*兴趣将产生积极作用,而这些心理因素对学生取得新的进步又能起到推动作用,从而使学生进入一个不断发展的良性循环之中。
一、收获
1、出去听课比在学校闭门造车受益要快要多,来得更直接。
2、真实——课堂教学应该追求的境界
在观摩课教学中我总是觉得雕琢,事先准备的痕迹太过浓重,我自己的体会就比较深刻,当然我所说的并不是不备课一点准备都没有,而是不应该把每一句话每一个答案都要事先给学生灌输,害怕再作课中出现纰漏,我以前确实就有过这样的顾虑,因此当一节课在我不停的灌输给学生,然后在作课时,就觉得我的每一句话,学生的每一个答案都是准备好预设好的,而不是适时生成的,虽然按部就班成功的完成了一节看似完整的课堂教学,其实却缺少了真实性,多了几分虚假。听了这位教师的课后,我觉得在教学中他们做到了真实的教学,首先教师为学生创造广阔的思维空间,使学生暴露思维的真实,这节课中没有一种固定的.答案,而是拓展了思维的空间,这样学生的思维很活跃,即时生成的答案各式各样,让人找不到雕琢的痕迹,很真实。其次,学生畅所欲言,让学生凸显个性的真实,
3、情境——创设贴*生活的教学情境是课堂教学有效的手段
教学情境的设置应注重来自于生活,并不是每一节课都要设置与生活紧密结合的情境,而是尽量贴*于生活,这样学生学*起来便于思考操作,同时也能在生活中加以应用。特别是像我们学校的学生更要注重与生活实际的结合,因为我们的目标就是要让学生通过学*掌握解决生活中出现的一些问题的手段方法,掌握技能。所以情境的创设需要我在生活中教学中多观察,多思考,多操作。
4、三维目标的整合——课堂教学的更高要求
教育理念的转变正在发生巨大的变化,本节课中的“三维目标”要求教师在教学中尽量做到这三个目标的整合,而且是“品之有味,寻之无迹”,如在这节数学课的教学中,她通过教学让学生体会到了,不同的事物从不同的角度去看去评定都会有不同的结果和答案,那么做人就是这样我们不应该以一种标准去看待我们周边的人、事,我们要从多角度去思考一个问题,所以这节课就是在这样的看似在作练*的过程中,让学生通过学*知识,提高了学生分析判断事物的能力,同时也教会学生如何做人。做到了“三维目标的整合”。
5、亮点——让课堂教学生辉的装饰品
能让听者有畅所欲言的欲望的课就是一节好课,能够让听者回去就可借鉴操作的也是一节好课,我觉得一节好课并非是很完美的,哪怕只有一个亮点,能够引起大家共鸣,我觉得都是好课,其实这位老师的课并不是像我想象中的那么好,而且在我们学校应用起来未必就很实用,但是在他练*的设计中,他采用了层层递进、小组合作,并让学生进行质疑,我感到了教学的效果非常好,这就是一个亮点,使这节课生辉。
6、教师素质之高,学生*惯之好。是我们该思考如何去做。
二、自我反思
总之,观摩了这位老师的课,聆听了教研室教学质量分析,我充分认识到每一次外出学*对于我都是一种反思和激励,让我在欣赏别人精彩的同时发现了自己的很多不足,在以后的教学中,一定要严格要求自己:做到课前认真解读教材,根据学生的实际情况设计出合理的教学流程;课后认真反思,坚持写好教学后记;多看书学*,多做笔记,不断提高自己教学业务水*。
你能背出几首?
中国金融信息中心 李雨琪摄
01 《酬乐天扬州初逢*上见赠》
唐·刘禹锡
巴山楚水凄凉地,二十三年弃置身。
怀旧空吟闻笛赋,到乡翻似烂柯人。
沉舟侧畔千帆过,病树前头万木春。
今日听君歌一曲,暂凭杯酒长精神。
【哲理】翻覆的船只旁仍有千千万万的帆船经过;枯萎树木的前面也有万千林木欣欣向荣。
人生没有哪条路是白走的,你读过的书,走过的路,听过的歌,流过的泪,吃过的苦,看过的风景,见过的世面,爱过的人。这些点点滴滴拼凑起来,才成就了今天真实的你,也才让你的人生变得更加丰满。
02 《活水亭观书有感二首·其二》
宋·朱熹
昨夜江边春水生,艨艟巨舰一毛轻。
向来枉费推移力,此日中流自在行。
【哲理】往日舟大水浅,众人使劲推船,也是白费力气,而此时春水猛涨,巨舰却自由自在地飘行在水流中。
君子谋时而动,顺势而为。借助客观的事物之后,以往很难的事情也会变得简单。
03 《登飞来峰》
宋·王安石
飞来山上千寻塔,闻说鸡鸣见日升。
不畏浮云遮望眼,自缘身在最高层。
(飞来山一作:飞来峰)
【哲理】不怕层层浮云遮挡我远望的视线,只因为如今我站在最高层。
人不能只为眼前的利益,应该放眼大局和长远。
04 《冬夜读书示子聿》
宋·陆游
古人学问无遗力,少壮工夫老始成。
纸上得来终觉浅,绝知此事要躬行。
【哲理】从书本上得来的知识毕竟不够完善,要透彻地认识事物还必须亲自实践。
实践是检验真理的唯一标准。一个既有书本知识,又有实践精神的人,才是真正有学问的人。
05 《龟虽寿》
两汉·曹操
神龟虽寿,犹有竟时。
腾蛇乘雾,终为土灰。
老骥伏枥,志在千里。
烈士暮年,壮心不已。
盈缩之期,不但在天;
养怡之福,可得永年。
幸甚至哉,歌以咏志。
【哲理】有远大抱负的人士到了晚年,奋发思进的雄心不会止息。
一个人精神状态是最重要的,不应因年暮而消沉。要有永不停止的理想追求和积极进取精神,永远乐观奋发,自强不息,保持思想上的青春。
中国金融信息中心 王子清摄
06 《登鹳雀楼》
唐·王之涣
白日依山尽,黄河入海流。
欲穷千里目,更上一层楼。
【哲理】想要看到千里之外的风光,那就要再登上更高的一层城楼。
只有站得高才能看得远。
07 《浣溪沙·一曲新词酒一杯》
宋·晏殊
一曲新词酒一杯,
去年天气旧亭台。
哲理通常是关于人生问题的哲学学说,它是人生观的理论形式,那么关于哲理的文名句又有哪些呢?
1) 只看后浪催前浪,当悟新人胜旧人。——宋·释文向<过苕溪>
2) 沉舟侧畔千帆过,病树前头万木春。——唐·刘禹锡<酬乐天扬州初逢*上见赠>
3) 不识庐山真面目,只缘身在此山中。——宋·苏轼<>
4) *水楼台先得月,向阳花木易为春。——宋·苏麟<断句>
5) 欲穷千里目,更上一层楼。——唐·王之焕<>
6) 横看成岭侧成峰,远*高低各不同。——宋·苏轼<题西林壁>
7) 等闲识得东风面,万紫千红总是春。——宋·朱熹<春日>
8) 功高成怨府,权盛是危机。——宋·王迈<读渡江诸将传>
9) 尔曹身为名俱灭,不废江河万古流。——唐·<戏为六绝句>
10) 天若有情天亦老。——唐·李贺<金铜仙人辞汉歌>
11) 春种一粒粟,秋收万颗子。——唐·李绅<悯农>
12) 苍龙日暮还行雨,老树春深更着花。——明·顾炎武<又酬傅处士次韵>
13) 它山之石,可以攻玉。——<·鹤鸣>
14) 一湾死水全无浪,也有春风摆动时。——元·戴善夫<陶学士醉写风光好杂剧>
15) 瓜田不纳履,李下不正冠。——汉·乐府民歌<君子行>
16) 何意百炼钢,化为绕指柔。——晋·刘琨<重赠卢谌>
17) 古来青史谁不见,今见功名胜古人。——唐·岑参<轮台歌奉送封大夫出师西征>
18) 不是一番梅彻骨,怎得梅花扑鼻香。——元·高明<琵琶记>
19) 年年岁岁花相似,岁岁年年人不同。——唐·刘希夷<代悲白头翁>
20) 会当凌绝顶,一览众山小。——唐·杜甫<>
21) 蚍蜉撼大树,可笑不自量。——唐·韩愈<调张籍>
22) 人生七十古来稀。——唐·杜甫<曲江>
23) 请君莫奏前朝曲,听唱新翻杨柳枝。——唐·刘禹锡<杨柳枝词>
24) 物情无巨细,自适固其常。——唐·杜甫<夏夜叹>
25) 人生到处知何似,应似飞鸿踏雪泥。——泥上偶然留指爪,鸿飞那复计东西。——宋·苏轼<和子由渑池怀旧>
26) 假金方用真金镀,若是真金不镀金。——唐·李绅<答章孝标>
27) 野火烧不尽,春风吹又生。——唐·<赋得古原草离别>
28) 人有悲欢离合,月有阴晴圆缺。——宋·苏轼<·明月几时有>
29) 山重水复疑无路,柳暗花明又一村。——宋·<游山西村>
30) 山外青山楼外楼。——宋·林升<题临安邸>
31) 芳林新叶催陈叶,流水前波让后波。——唐·刘禹锡<乐天见示伤微之敦诗晦叔三君子皆有深分因成是诗以寄>
32) 江山代有才人出,各领风骚数百年。——清·赵翼<论诗>
33) 旧时王谢堂前燕,飞入寻常百姓家。——唐·刘禹锡<乌衣巷>
34) 寅父犹能畏后生,丈夫未可轻少年。——唐·<上李邕>
35) 春花无数,毕竟何如秋实。——宋·陈亮<三都乐>
36) 城中好高髻,四方高一尺。——汉·乐府民歌<城中谣>
37) 海日生残夜,江春入旧年。——唐·王湾<次北固山下>
38) 从来好事天生俭,自古瓜儿苦后甜。——元·白朴<阳春曲>题情>
39) 一寸光阴一寸金。——唐·王贞白<白鹿洞二首>
40) 不畏浮云遮望眼,只缘身在最高层。——宋·<登飞来峰>
41) 人事有代谢,往事成古今。——唐·<与诸子登岘山>
42) 草木本无意,荣枯自有时。——唐·孟浩然<江上寄山阴崔少府国辅>
43) 竹外桃花三两枝,春江水暖鸭先知。——宋·苏轼<惠崇〈春江晚景〉>
44) 问渠哪得清如许,为有源头活水来。——宋·朱熹<观书有感>
45) 万物兴歇皆自然。——唐·李白<日出行>
46) 纸上得来终觉浅,绝知此事要躬行。——宋·陆游<冬夜读书示子聿>
47) 采得百花成蜜后,为谁辛苦为谁甜。——唐·罗隐<蜂>
48) 人有悲欢离合,月有阴晴圆缺,此事古难全。——宋·苏轼<水调歌头>
49) 挽弓当挽强,用箭当用长。射人先射马,擒贼先擒王。——唐·杜甫<前出塞>
50) 沉舟侧畔千帆过,病树前头万木春。——唐·刘禹锡<酬乐天扬州初逢*上见赠>
蕴含数学因数的古诗
蕴含数学因数的古诗词
蕴含着数学因素的古诗
蕴含数学意义的古诗词
蕴含数学几何知识的古诗
蕴含数学知识的古诗词
因数和倍数的古诗
含数学的古诗
含数学的古诗数学小报
含有数学数字的古诗
含虚指数学的古诗
含数学定理的古诗
数学的古诗数学的古诗
蕴含数列知识的古诗词
与数学的古诗
含有数学的古诗大全
含有数学的古诗句
《数学和数学家的古诗》
含有数学元素的古诗
数学家关于数学的古诗
含有数学的春节古诗
含有数学的古诗词
含有数学趣味的古诗
写数学的古诗
有数学的古诗
数学数学名言
小学数学古诗文里的数学
古诗词蕴含的数理化知识
含数学转化思想的古诗
清明唐杜牧古诗中蕴含的数字