关于与数学有关的古诗的文字专题页,提供各类与与数学有关的古诗相关的句子数据。我们整理了与与数学有关的古诗相关的大量文字资料,以各种维度呈现供您参考。如果与数学有关的古诗未能满足您的需求,请善用搜索找到更适合的句子语录。
有关数学的古诗
在日复一日的学*、工作或生活中,说到古诗,大家肯定都不陌生吧,古诗有四言、五言、七言、杂言等多种形式。其实很多朋友都不太清楚什么样的古诗才是好的古诗,以下是小编帮大家整理的有关数学的古诗,仅供参考,欢迎大家阅读。
宋代邵雍是数理大家,写过一首朗朗上口的数字诗,描写一路的.景物,全诗共20个字,把10个数字全用上了:
一去二三里,烟村四五家,
亭台六七座,八九十枝花。
这首诗用数字反映远*、村落、亭台和花,通俗自然,脍炙人口,也是我们小时候可能就听说过的一首诗,让人难忘啊。
明代林和靖写的一首雪梅诗,全诗用表示雪花片数的数量词写成。读后就好像身临雪境,飞下的雪片由少到多,飞入梅林,就难分是雪花还是梅花,妙趣横生。
一片二片三四片,五片六片七八片。
九片十片无数片,飞入梅中都不见。
清代纪晓岚是著名的才子,据说乾隆下江南时,一天在江上看见一条渔船荡桨而来,就叫纪晓岚以渔为题作诗一首,要求在诗中用上十个“一”字。纪晓岚很快吟出一首:
一篙一橹一渔舟,一个渔翁一钓钩,
一俯一仰一场笑,一人独占一江秋。
无独有偶,清代的女诗人何佩玉擅长作数字诗,也连用了十个“一”,生动地勾画了一幅高僧晚归图:
一花一柳一点矶,一抹斜阳一鸟飞。
一山一水一中寺,一林黄叶一僧归。
北宋王安石关心民生疾苦,看北宋王朝很多虚设的官员,饱食终日,于是写道:
一窝二窝三四窝,五窝六窝七八窝,
食尽皇家千钟粟,凤凰何少尔何多。
把他们比作麻雀,形象了地讽刺了他们反对变法的丑态。
**前,法币天天贬值,物价一日数长,一位教师这样描绘饥寒交迫的生活:
一身*价布,两袖粉笔灰。
三餐吃不饱,四季常皱眉。
五更就起床,六堂要你吹。
九天不发饷,十家皆断炊。
下面还有一些大家耳熟能详的数字入诗的佳句:
城阙辅三秦,风烟望五津。
烽火连三月,家书抵万金。
功盖三分国,名成八阵图。
千山鸟飞绝,万径人踪灭。
欲穷千里目,更上一层楼。
七八个星天外,两三点雨山前。
毕竟西湖六月中,风光不与四时同。
三顾频烦天下计,两朝开济老臣心。
飞流直下三千尺,疑是银河落九天。
梅须逊雪三分白,雪却输梅一段香。
*猿声啼不住,轻舟已过万重山。
故国三千里,深宫二十年。一声《何满子》,双泪落君前。
两个黄鹂鸣翠柳,一行白鹭上青天。窗含西岭千秋雪,门泊东吴万里船。
坐地日行八万里,巡天遥看一千河。
1、《山村咏怀》
(北宋)邵雍
一去二三里,烟村四五家,
亭台六七座,八九十枝花。
2、《大林寺桃花》
(唐)白居易
人间四月芳菲尽,山寺桃花始盛开。长恨春归无觅处,不知转入此中来。
3、《闺怨》
(清)黄焕中
百尺楼台万丈溪,云书八九寄辽西。
忽闻二月双飞雁,最恨三更一唱鸡。
五六归期空望断,七千离恨竟未齐。
有趣的数学诗
数名诗:顾名思义,就是诗歌包含一定的数学知识,较为常见的是包含数字的诗歌。以下是小编整理的有趣的数学诗,希望对大家有所帮助。
美丽的花朵+翠绿的树叶+鸟儿的叫声=夏天的信号
阳光×种子=果实
1/2=一举两得
老鼠+猫咪=死对头
落叶+毛毛虫+河水=在划船的毛毛虫
毛毛虫+鸟叫声-叫声=危险
阴森的黑夜+床-天亮=睡觉的时刻到了
1/2=甜蜜/甜甜蜜蜜
雨滴+河水=一小圈一小圈的涟漪
打喷嚏+打呼=失眠
滴答+滴答+滴答+滴滴答答=下雨天
印度豹+打结=死亡
我们的心就是一个圆形,因为它们的离心率永远为零。
我对你的思念就是一个循环小数,一遍一遍,执迷不悟。
我们就是抛物线,你是焦点,我是准线,你想我有多深,我念你便有多真。
零向量可以有很多方向,却只有一个长度,就像我,可以有很多朋友,却只有一个你,值得我来守护。
生活,可以是甜的,也可以是苦的,但却不能没有你,枯燥**,就像分母,可以是正的,也可以是负的,却不能没有意义,取值为零。
有了你,我的世界才有无穷大,因为任何实数,都无法表达,我对你深深的love。
我对你的感情,就像以自然常数e为底的指数函数,不论经过多少求导的风雨,依然不改本色,真情永驻。
不论我们前面是怎样的随机变量,不论未来有多大的方差,相信波谷过了,波峰还会远吗?
你的生活就是我的定义域,你的思想就是我的对应法则,你的微笑肯定,就是我存在于此的充要条件。
如果你的.心是x轴,那我就是个正弦函数,围你转动,有收有放。如果我的心是x轴,那你就是开口向上、Δ为负的抛物线,永远都在我的心上。
我每天带给你的惊喜和希望,就像一个无穷集合里的每个元素,虽然取之不尽,却又各不一样。
如果我们有一天身处地球的两侧,咫尺天涯,那我一定顺着通过地心的大圆来到你的身边,哪怕是用爬。
如果有一天我们分居异面直线的两头,那我一定穿越时空的阻隔,划条公垂线向你冲来,一刻也不愿逗留。
但如果有一天,我们不幸被上帝扔到数轴的两端,正负无穷,生死相断,没有关系,只要求个倒数,我们就能心心相依,永远相伴。
情人是多么的神秘,却又如此的美妙,就像数学,可以这么通俗,却又那般深奥。
只有把握真题的规律,考试的纲要,才能叩启象牙的神塔,迎接情人的怀抱!
我们的心就是一个圆形,
因为它的离心率永远是零。
我对你的思念就是一个循环小数,
一遍一遍,执迷不悟。
我们就是抛物线,你是焦点,我是准线,
你想我有多深,我念你便有多真。
零向量可以有很多方向,却只有一个长度,
就像我,可以有很多朋友,
却只有一个你,值得我来守护。
生活,可以是甜的,也可以是苦的,
但却不能没有你,枯燥**,
就像分母,可以是正的,也可以是负的,
却不能没有意义,取值为零。
有了你,我的世界才有无穷大,
因为任何实数,都无法表达,我对你深深的love。
我对你的感情,就像以自然对数e为底的指数函数,
不论经过多少求导的风雨,依然不改本色,真情永驻。
不论我们前面是怎样的随机变量,
不论未来有多大的方差,
相信波谷过了,波峰还会远吗?
你的生活就是我的定义域,你的思想就是我的对应法则,
你的微笑肯定,就是我存在于此的充要条件。
如果你的心是x轴,那我就是个正弦函数,
围你转动,有收有放。
如果我的心是x轴,那你就是开口向上、
Δ为负的抛物线,永远都在我的心上。
我每天带给你的惊喜和希望,
就像一个无穷集合里的每个元素,
虽然取之不尽,却又各不一样。
如果我们有一天身处地球的两侧,咫尺天涯,
那我一定顺着通过地心的大圆来到你的身边,
哪怕是用爬。
如果有一天我们分居异面直线的两头,
那我一定穿越时空的阻隔,
划条公垂线向你冲来,一刻也不愿逗留。
但如果有一天,我们不幸被上帝扔到数轴的两端,
正负无穷,生死相断,
没有关系,只要求个倒数,我们就能心心相依,永远相伴。
情人是多么的神秘,却又如此的美妙,
就像数学,可以这么通俗,却又那般深奥。
只有把握真题的规律,考试的纲要,
才能叩启象牙的神塔,迎接情人的怀抱!
在秋风秋雨的线性空间中
思念着往昔的线性相关
任凭时光飞逝
指向你的永远是那不变的爱情矢量
多想这世界是两个人的集合
弥漫着天长地久的二元关系
在这有限维空间中
你的坐标就像天上的寒星
一一映射着无解的爱情方程
古希腊数学的历史简介
数学是一种非常实用的工具,上到天文历法,下到寻常百姓,都需要运用数学的知识点来解答自己的疑惑。但是,你知不知道古希腊数学已经十分发达,能够解答一些现代问题,下面为大家带来古希腊数学的历史简介,快来看看吧。
古代希腊从地理疆城上讲,包括巴尔干半岛南部、小亚细亚半岛西部、意大利半岛南部、西西里岛及爱琴海诸岛等地区。这里长期以来由许多大小奴棣制城邦国组成,直到约公元前325年,亚历山大大帝(Alexan derthe Great)征服了希腊和*东、埃及,他在尼罗河口附*建立了亚历山大里亚城(Alexandria)。亚历山大大帝死后(323B.C.),他创建的帝国分裂为三个独立的王国,但仍联合在古希腊文化的约束下,史称希腊化国家。统治了埃及的托勒密一世(PtolemytheFirst)大力提倡学术,多方网罗人才,在亚历山大里亚建立起一座空前宏伟的博物馆和图书馆,使这里取代雅典,一跃而成为古代世界的学术文化中心,繁荣几达千年之久!
希腊人的思想毫无疑问地受到了埃及和巴比伦的影响,但是他们创立的数学与前人的数学相比较,却有着本质的区别,其发展可分为雅典时期和亚历山大时期两个阶段。
一、雅典时期(600B.C.-300B.C.)
这一时期始于泰勒斯(Thales)为首的伊奥尼亚学派(Ionians),其贡献在于开创了命题的证明,为建立几何的演绎体系迈出了第一步。稍后有毕达哥拉斯(Pythagoras)领导的学派,这是一个带有神秘色彩的政治、宗教、哲学团体,以「万物皆数」作为信条,将数学理论从具体的事物中抽象出来,予数学以特殊独立的地位。
公元前480年以后,雅典成为希腊的政治、文化中心,各种学术思想在雅典争奇斗妍,演说和辩论时有所见,在这种气氛下,数学开始从个别学派闭塞的围墙里跳出来,来到更广阔的天地里。
埃利亚学派的芝诺(Zeno)提出四个著名的悖论(二分说、追龟说、飞箭静止说、运动场问题),迫使哲学家和数学家深入思考无穷的问题。智人学派提出几何作图的三大问题:化圆为方、倍立方体、三等分任意角。希腊人的兴趣在于从理论上去解决这些问题,是几何学从实际应用向演绎体系靠拢的又一步。正因为三大问题不能用标尺解出,往往使研究者闯入未知的领域中,作出新的发现:圆锥曲线就是最典型的例子;「化圆为方」问题亦导致了圆周率和穷竭法的探讨。
哲学家柏拉图(Plato)在雅典创办著名的柏拉图学园,培养了一大批数学家,成为早期毕氏学派和后来长期活跃的亚历山大学派之间联系的纽带。欧多克斯(Eudoxus)是该学园最著名的人物之一,他创立了同时适用于可通约量及不可通约量的比例理论。柏拉图的学生亚里士多德(Aristotle)是*的奠基者,其逻辑思想为日后将几何学整理在严密的逻辑体系之中开辟了道路。
二、亚历山大时期(300B.C.-641A.D.)
这一阶段以公元前30年罗马帝国吞并希腊为分界,分为前后两期。
亚历山大前期出现了希腊数学的黄金时期,代表人物是名垂千古的三大几何学家:欧几里得(Euclid)、阿基米得(Archimedes)及阿波洛尼乌斯(Appollonius)。
欧几里得总结古典希腊数学,用公理方法整理几何学,写成13卷《几何原本》(Elements)。这部划时代历史巨著的意义在于它树立了用公理法建立起演绎数学体系的最早典范。
阿基米得是古代最伟大的数学家、力学家和机械师。他将实验的经验研究方法和几何学的演绎推理方法有机地结合起来,使力学科学化,既有定性分析,又有定量计算。阿基米得在纯数学领域涉及的范围也很广,其中一项重大贡献是建立多种*面图形面积和旋转体体积的精密求积法,蕴含着微积分的思想。
亚历山大图书馆馆长埃拉托塞尼(Eratosthenes)也是这一时期有名望的学者。阿波洛尼乌斯的《圆锥曲线论》(ConicSections)把前辈所得到的圆锥曲线知识,予以严格的系统化,并做出新的贡献,对17世纪数学的发展有着巨大的影响。
亚历山大后期是在罗马人统治下的时期,幸好希腊的文化传统未被破坏,学者还可继续研究,然而已没有前期那种磅礡的气势。这时期出色的数学家有海伦(Heron)、托勒密(Plolemy)、丢番图(Diophantus)和帕波斯(Pappus)。丢番图的代数学在希腊数学中独树一帜;帕波斯的工作是前期学者研究成果的总结和补充。之后,希腊数学处于停滞状态。
公元529年,东罗马帝国皇帝查士丁尼(Justinian)下令关闭雅典的学校,严禁研究和传播数学,数学发展再次受到致命的打击。
公元641年,*人攻占亚历山大里亚城,图书馆再度被焚(第一次是在公元前46年),希腊数学悠久灿烂的历史,至此终结。
总括而言,希腊数学的成就是辉煌的,它为人类创造了巨大的精神财富,不论从数量还是从质量来衡量,都是世界上首屈一指的。比希腊数学家取得具体成果更重要的是:希腊数学产生了数学精神。即数学证明的演绎推理方法。数学的抽象化以及自然界依数学方式设计的信念,为数学乃至科学的发展起了至关重要的作用。而由这一精神所产生的理性、确定性、永恒的不可抗拒的规律性等一系列思想,则在人类文化发展史上占据了重要的地位。
古希腊数学家的故事
人物生*
埃拉托色尼曾应埃及国王的聘请,任皇家教师,并被任命为亚历山大里亚图书馆一级研究员。从公元前234年起接任图书馆馆长。当时亚历山大里亚图书馆是古代西方世界的最高科学和知识中心,那里收藏了古代各种科学和文学论著。馆长之职在当时是希腊学术界最有权威的职位,通常授予德高望重、众望所归的学者。埃拉托色尼担任馆长直到他逝世为止,这也说明了他在古希腊学术界享有很高的声誉。埃拉托色尼充分地利用了他担任亚历山大里亚图书馆馆长职位之便,十分出色地利用了馆藏丰富的地理资料和地图。他的天才使他能够在占有文献资料的基础上,作出科学的创新。埃拉托色尼在地理学方面的杰出贡献,集中地反映在他的两部代表著作中,即《地球大小的修正》和《地理学概论》二书。
前者论述了地球的形状,并以地球圆周计算为著名。他创立了精确测算地球圆周的科学方法,其精确程度令人为之惊叹;后者是有人居住世界部分的地图及其描述。在该书中,他系统地提出了采用经纬网格编绘世界地国的方法,全面地改绘了爱奥尼亚地图。他以精确的测量为依据,将得到的所有天文学和测地学的成果尽量结合起来,因而他所编绘的世界地图不仅在当时具有权威性,而且成为其后一切古代地图的基础。虽然埃拉托色尼的这两部地理著作不幸都失传了,但是通过保存下来的残篇,特别是斯特拉波的引文,后世对它们的内容,以及作者的精辟见解有一定的了解。
丈量地球的周长
关于地球圆周的计算是《地球大小的修正》一书的精华部分。在埃拉托色尼之前,也曾有不少人试图进行测量估算,如攸多克索等。但是,他们大多缺乏理论基础,计算结果很不精确。埃拉托色尼天才地将天文学与测地学结合起来,第一个提出设想在夏至日那天,分别在两地同时观察太阳的位置,并根据地物阴影的长度之差异,加以研究分析,从而总结出计算地球圆周的科学方法。这种方法比自攸多克索以来*惯采用的单纯依靠天文学观测来推算的方法要完善和精确得多,因为单纯天文学方法受仪器精度和天文折射率的影响,往往会产生较大的误差。埃拉托色尼选择同一子午线上的两地西恩纳(Syene,今天的阿斯旺)和亚历山大里亚,在夏至日那天进行太阳位置观察的比较。在西恩纳附*,尼罗河的一个河心岛洲上,有一口深井,夏至日那天太阳光可直射井底。这一现象闻名已久,吸引着许多旅行家前来观赏奇景。
它表明太阳在夏至日正好位于天顶。与此同时,他在亚历山大里亚选择了一个很高的方尖塔作参照,并测量了夏至日那天塔的阴影长度,这样他就可以量出直立的方尖塔和太阳光射线之间的角度。获得了这些数据之后,他运用了泰勒斯的数学定律,即一条射线穿过两条*行线时,它们的对角相等。埃拉托色尼通过观测得到了这一角度为7°12′,即相当于圆周角360°的1/50。由此表明,这一角度对应的弧长,即从西恩纳到亚历山大里亚的距离,应相当于地球周长的1/50。下一步埃拉托色尼借助于皇家测量员的测地资料,测量得到这两个城市的距离是5000希腊里。一旦得到这个结果,地球周长只要乘以50即可,结果为25万希腊里。为了符合传统的圆周为60等分制,埃拉托色尼将这一数值提高到252000希腊里,以便可被60除尽。埃及的希腊里约为157.5米,可换算为现代的公制,地球圆周长约为39375公里,经埃拉托色尼修订后为39360公里,与地球实际周长引人注目地相*。由此可见,埃拉托色尼巧妙地将天文学与测地学结合起来,精确地测量出地球周长的精确数值。这一测量结果出现在2000多年前,的确是了不起的,是载入地理学史册的重大成果。
此外,《地球大小的修正》一书还包括以下各方面的研究:赤道的长度、回归线与极圈的距离、极地带的范围、太阳和月亮的大小、日地月之间的距离、太阳和月亮的全食和偏食以及白昼长度随纬度和季节的变化等等。这些研究代表了当时地理学发展的高水*。
描绘新的地球
《地理学概论》一书致力于研究有人居住的世界。全书分三卷,第一卷先是一段简短的绪言,对地理学的产生和发展作了历史的回顾,然后着重阐述地球的结构和演变以及水的运动(潮汐、海峡中的海流等);第二卷为数理地理学。主要探讨天空、大地和海洋的形状和结构、地球的区域和地带的划分以及已知世界的范围等问题;第三卷是论述世界地图的改绘,包括一幅新编绘物世界地图以及区域描述。埃拉托色尼的这本书总结了希腊地理学的成就,标志了这个时期地理学的最高水*,是古代地理学宝库中的一个重要文献。埃拉托色尼继承和发展了亚里士多德的居住适应地带学说,将世界分为欧洲、亚洲和利比亚(非洲)三大洲和一个热带、两个温带、两个寒带等五个温度带。
他改进了亚里士多德的分带法,对五个地带的南北界线,均给予纬度的严格划分。埃拉托色尼的区域和地带的划分,与前辈学者相比,科学性和系统都要强得多。他的地球分带已同现代地理学的“地带”概念相当接*。他确定的.回归线位置,与其实际位置(23°30′)仅差半度,其精确性令人为之赞叹。不过,埃拉托色尼关于世界陆地三大洲的划分,与实际情况相差甚大,显然这是受到当时认识论和科学水*的局限。埃拉托色尼认识到,古老的爱奥尼亚地图必须全面地改绘。他的目标是运用几何学的方法,依据精确的天文学和测地学新数据,来绘制更合理的世界图象。他毫不含糊地屏弃了亚历山大以前的资料,大量采用毕提亚斯远航和亚历山大远征以及其他新*的地理考察的成果。在使用资料时,他并不是一味盲从,而十分注意分析判断,力求去伪存真。例如,他在处理路线测量资料时,考虑了地势起伏和道路弯曲等因素,对资料提供的里程数据,*均减去了1/15,来加以订正,这样就大大提高了地图的精度和资料的准确性。
为了编绘新的世界地图,埃拉托色尼首先估算了有人居住世界的宽度和长度。宽度数值是沿通过亚历山大里亚城的子午线测算出来的,结果是38000希腊里;长度数值则是沿着从赫尔克列斯之位至恒河河口一线来估算的,结果是78000希腊里。长度线与宽度线组成了地图的基础坐标,它们在罗得岛相交,然后,他在这两条基础座标线上,各选了一系列地点,如经线纵座标上的阿罗马提斯(Aromates,今索马里)、麦罗埃(Meroe)、西恩纳、亚历山大里亚、赫勒斯湾、波里斯丹尼河(Borysthene,今第聂伯河河口)和图勒等七处;纬线横座标上的印度河、“里海之门”、幼发拉底河上的塔普萨克(Thapsa-que)、罗马和迦太基(Carthage)等处,分别划出横向的纬线和纵向的经线,组成了地图的经纬网格。埃拉托色尼创立经纬网系统,是地图学发展中的一项重大的突破和飞跃,有着深远的意义,它为投影地图学的出现奠定了基础,是投影地图学取代经验地图学的先驱。埃拉托色尼在他的基础经纬网之上,还叠加了一套被称为“普林特”框格(Plinthes)和“斯弗拉吉德斯”框格(Sphragides)的几何图形。前者呈长形条带状,后者呈不规则形状。它们组成了地图的第二级网格系统,作为一级经结网格的补充,其作用是便于标明《地理学概论》一书中所描述的各地区的位置和范围。
这种将世界划分为不同地区的思维方法,似乎可视为现代地理学术语中的“区划”的雏型。同时,他将地理描述中的分区叙述与地图编绘紧密结合起来,也是一种创新尝试,成为描述地理学与数理地理学相结合的又一种范例。显然,埃拉托色尼的地理学思想比前辈地理学家更臻成熟。他对地理空间表现了极大的兴趣,不仅因为它是一个地理实体,也不仅因为它是一个包含各种特性的地域,而且因为在地理空间中,存在着特征鲜明的自然环境同改造利用这一环境的社会两者之间的相互联系。埃拉托色尼的地理学著作和成就标志了古代希腊地理学的最高峰和结束。2000多年前,有人用简单的测量工具计算出地球的周长。这个人就是古希腊的埃拉托色尼(约公元前275-前194)。
埃拉托色尼博学多才,他不仅通晓天文,而且熟知地理;又是诗人、历史学家、语言学家、哲学家,曾担任过亚历山大博物馆的馆长。细心的埃拉托色尼发现:离亚历山大城约800公里的塞恩城(今埃及阿斯旺附*),夏日正午的阳光可以一直照到井底,因而这时候所有地面上的直立物都应该没有影子。但是,亚历山大城地面上的直立物却有一段很短的影子。他认为:直立物的影子是由亚历山大城的阳光与直立物形成的夹角所造成。从地球是圆球和阳光直线传播这两个前提出发,从假想的地心向塞恩城和亚历山大城引两条直线,其中的夹角应等于亚历山大城的阳光与直立物形成的夹角。按照相似三角形的比例关系,已知两地之间的距离,便能测出地球的圆周长。埃拉托色尼测出夹角约为7度,是地球圆周角(360度)的五十分之一,由此推算地球的周长大约为4万公里,这与实际地球周长(40076公里)相差无几。他还算出太阳与地球间距离为1.47亿公里,和实际距离1.49亿公里也惊人地相*。这充分反映了埃拉托色尼的学说和智慧。埃拉托色尼是首先使用"地理学"名称的人,从此代替传统的"地方志",写成了三卷专著。书中描述了地球的形状、大小和海陆分布。埃拉托色尼还用经纬网绘制地图,最早把物理学的原理与数学方法相结合,创立了数理地理学。
数学与是一个奇怪的组合,但是在爱情的面前,这两者都低头了。
浪漫数学篇一:拉格朗日
罗尔街旁
守望柯西的忧伤
若思想有界
爱已被迫收敛
感情在定义域内连续
洛必达的终结
解不开泰勒的心结
是否还在麦克劳林的彷徨中
独自徘徊
我们拿生命的定积分
丈量感情的微积分
换来青春的不定积分
前方是否可导
等待一生的莱布尼茨
9对3说,我除了你,还是你;
4对2说,我除了2,还是2;
1对0说,我除了你,一切都没有意义;
0对1说,我除了你,就是孤独的自己。
《延长线》
他们都说你已离去,
只有我知道,
你从未消失,
只是和过去一样,
陪我玩捉迷藏。
不一样的是,
这次,
你藏在,
我余生每道目光的,
延长线上。
数学打油诗8首
几何题,欢迎你,
记准公式就可以。
想作图,找工具,
尺子、圆规、量角器,
画高本质作垂线,
*行就是等距离;
量角做到三重合,
读出数据要精确;
圆规伸脚走半径,
直径周长不可以。
是忠言,要谨记,
祝你考出好成绩。
集合里面好多种,
是交或并还是空。
不等式里可注意,
乘除负数要转向。
乘法算式要记住,
相同加数写前头,
乘号跟着加数走,
最后写的.是个数,
几乘以几是读法,
表示几个几相加。
1厘米,很淘气,仔细找,才见你。
指甲盖1厘米,伸出手指比一比。
长短和我差不多,大约就是一厘米。
100个我是1米,我是米的小兄弟,
物体长了别用我,要不一定累死你。
个位十位要对齐,
加号减号不忘记。
横线一定要划直,
计算要从个位起。
加法进1写下面,
减法退1点上面。
拿到式题认真看,
先算乘除后加碱。
遇到括号要先算,
运用规律要改变。
一些数据要记牢,
技能技巧掌握好。
加减法速算你莫愁,
拿到算式看清楚,
接*整百凑整数,
如下处理无谬误。
加法不足减补数,
超余零头加在后。
减法不足加补数,
超余零头减在后。
两位数乘法并不难,
计算过程有三点:
乘数个位要先算,
句子大全的语句,常常简短而有霸气,充满正能量。人生常常遇到困难,而那些好句子,不经意间直击内心柔软的地方,进而一改颓丧的心情。好句摘抄网向您推荐给数学老师的贺词。
1.幸福的*方=幸幸福福,快乐的*方=快快乐乐,在新的一年里祝您幸幸福福,快快乐乐!
2.“成功=您的教导+我们的努力”,您已经把公式给了我们,另一半我们会出色地展示给您看,祝您春节快乐!
生我养我是父母,给我希望、教我知识、人生紧要关头指引我方向的,却是您--我敬爱的老师! 生命中最重要的引导者!
3.我们象标量,只有大小,没有方向,您让我们找到了方向,让我们成为向量,让我们寻找自己的梦想,祝您在新的一年里,健康*安,万事如意!
4.1年即将开始,祝老师好运接2连3,心情4季如春,生活5颜6色,7彩缤纷,偶尔8点大财,烦恼全抛9霄云外,请接受我们10全10美的祝福。
二十因为您的一片爱心的灌浇,一番耕耘的辛劳,才会有桃李的绚丽,稻麦的金黄。愿我的谢意化成一束不凋的鲜花,给您的生活带来芬芳。
高考终于结束了,在三年里感谢老师、感谢一起陪伴的同学们,感谢你们出现在我的生命中,千言万语无法表达我内心的感想,仅此献上一封信,表达我最真诚的感谢。
5.一寸一寸的粉笔,染白您的头发,加减乘除,算不尽您的关爱,虔诚地祝您康乐!
知道吗?孩子拥有一百种语言,每一种语言都代表了一份纯洁与快乐!在这片童心世界里,我们就是孩子的知心朋友。
6.我敬重的轨迹始终以您为圆心,而且永远是增函数,这是绝对值,虽然我要深造,但我会留下一道抛物线,代表我对您的祝福,祝您在新的一年中快乐无极限!
7.矩尺之间,慨叹人生几何,以自己的心灵为圆心,一圈一圈,描绘出桃李满天下 ,我知道自己是一条射线,无论走到哪里,您是我的起点。
8.上联:春满人间百花吐艳
一支粉笔,两袖清风,三尺讲台,四季寒暑,五更鸡啼,六艺兼修,七步之才,八方桃李,九州子弟,十分可敬。老师,教师节到了,祝您节日快乐!
毕业整四年了,老师的教导仍在滋润着我成长。你总说仅是我的朋友,我却说你是我的导航员,激励我永往直前。 本想用电话向您道一声节日快乐,但是您一笔一画教我学会了写字,所以这里我要用短信向您道一声:老师您好!
下联:福临小院四季常春
横批:万象更新
9.愿您一年365天天开心,8760时时时顺心,525600分分舒心,31536000秒秒畅心!
10.设:您在新的一年里收获为f(x),同有关f(x)的计算如下 :f(x) x幸福快乐,成功的收获;(n 为大于1的正整数)x失败,悲伤痛苦,0
11.新年快乐=新年快乐
12.您就是那根号,让我们这些被开方数茁壮成长。在这新春之际,我衷心地对您说一声:谢谢您,老师!
13.祝福加祝福是三个祝福,祝福减祝福是祝福的起点,祝福乘祝福是无限个祝福,祝福除以祝福还是祝福,祝福您春节快乐!
14.“成功=您的教导+我们的努力”,您已经把公式给了我们,另一半我们会出色地展示给您看,祝您春节快乐!
15.我敬重的轨迹始终以您为圆心,而且永远是增函数,这是绝对值,虽然我要深造,但我会留下一道抛物线,代表我对您的祝福,祝您在新的一年中快乐无极限!
16.矩尺之间,慨叹人生几何,以自己的心灵为圆心,一圈一圈,描绘出桃李满天下 ,我知道自己是一条射线,无论走到哪里,您是我的起点。
有如从朔风凛冽的户外来到冬日雪夜的炉边;老师,您的关怀,如这炉炭的殷红,给我无限温暖。我怎能不感谢您?
韶华流水,不觉间四年的大学生活就要走过,心中有太多太多的不舍。最深刻的是和老师们朝夕共处的那些日子;忘不了常驻在老师慈详面容上的如影随形的爽朗的笑容;忘不了老师大气磅礴的鼓励给我的振奋;忘不了定格在殷切期待目光中的那一危在旦夕那;忘不了饱含关切的眼神扫去心中的不快后的豁然开朗;老师,没有您的庇护,我将如何在远离牵肠挂肚的父母身旁后寻找我心中的避风港?
患难见真情!我仅代表我家人感谢我们老年大学的各级领导!感谢学校的各位老师!感谢我们电脑系所有的老师对我哥的帮助、对我家的帮助。老年大学各位老师的这种无私奉献的精神,使我深切感受到了在这个大家庭里的各位老师浓浓的友情、亲情。祝愿天下好心人一生*安,永远安安康康!
圆的数学日记(精选7篇)
已到了一天的末尾,相信你有很多感悟吧,因此我们要写好日记了。为了让您不再为写日记头疼,下面是小编精心整理的圆的数学日记,希望对大家有所帮助。
周末,我和爸爸一起去超市买卧室门外的小地毯,到了超市,爸爸选中了一种花色,这种花色有两种形状:圆形和正方形,服务员告诉我们,这两种地毯的周长都是一样的,是12.56dm。爸爸说:“反正大小都一样的,你来挑吧!”我连忙喊道:“我来算算。”说着,我向服务员要了纸和笔,按老师教过的方法,算起圆的面积。
要算圆的面积先求圆的半径:12.56÷3.14÷2=2分米,面积:3.14×2×2=12.56*方分米.
正方形的边长:12.56÷4=3.14分米,面积:3.14×3.14=9.8596*方分米.
“以即使圆和正方形的周长相等,它们的面积也不一定相等,买圆形地毯比正方形地毯要划算。”我滔滔不绝地给爸爸讲着,爸爸听得目瞪口呆,一旁的服务员也夸我聪明,我别提有多高兴了。
生活中真是处处有数学,处处有学问啊!
之前,我们探索了圆的周长,现在我们继续我们的探索之旅。圆有周长就"理所当然"会有面积。现在我们探索我们的圆的周长的"兄弟"圆的面积。
之前,圆的周长是关于直径的,那"兄弟"面积就是关于直径的"老弟"半径的了。我们看着书上的探究活动,我们拿出数学用具,里面有两个圆形,一个圆是把一个圆分成了12份,一个圆是把一个圆分成了24份。我把12份的剪了下来,按照书上,我们拼成了一个像*行四边形的图形,我很奇怪,继续把24份的也拼成了像长方形的图形,我慢慢的理解到了:拼成的*行四边形的高相当于圆的半径,它的底相当于圆周长的一半。而长方形的长相当于圆周长的一半,它的宽相当于圆的半径。从我的理解中,我推测出了圆的面积计算公式:π乘r的*方就是圆的面积了。在原来的基础中,我举一反三,列出了考试时考圆的面积的三种方式:1.已知半径求面积,这一种是最简单的,直接π乘r的*方就行了。2.已知直径求面积,这一种先要求出半径(直径除以2=半径),再用半径的*方乘π就行了。3.已知周长就面积,这一道题就有点困难,但只要细心就能做好。先求直径:周长除以π,再求半径:直径除以2,再π乘r的*方就行了。
数学我们要学会举一反三,我们也要学会自己动手推出公式,这样数学才会成为你的`知心朋友。
今天早上老师要教我们怎样算周长。
老师先拿出圆片说:“每个人先画一个圆片或拿出一个圆形的东西,想办法量出它的周长。”于是,我们开始讨论了。我们先想办法,再动手操作,一个同学马上想出了办法,便说:“我有办法了。先在圆片上做一个记号,再从那个记号为点,向右在尺子上滚动一周,做一个记号,量出的长度就是这个圆片的周长了。”我马上又想到了一个办法,我说:“我也有办法,我们用纸条在圆片上绕一周,做一个记号,然后量出纸条长度,就是圆的周长了。”
过了一会,老师听我们讲出各自的办法之后便说,这样有些办法不免会有些误差,我来教你们怎样算周长吧!
“圆的周长要用到直径,圆的周长总是直径的3倍多一些,实际上,圆的周长除以直径是一个固定的数,我们把它叫做圆周率,用字母π表示,计算时通常取3.14,所以圆的周长=直径×圆周率(3.14),也就是c=πd或c=2πr。老师说完又举了例子。
我们学会了怎样算圆周率(圆的周长)。
我们刚刚学*了圆的认识(一)、(二),知道了圆的许多知识,并且由圆的认识了解到了圆周长的应用,能联系生活实际解决问题,我们去了解一下圆周长的知识!
刚开始学圆的周长时,知道了能用滚动法和绕线法来量出圆的周长,探究出了圆的周长总是直径3倍多一些,实际上,圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,用字母π表示,计算时,通常取3.14。我们就得出一个公式:如果用C表示的周长,那么C=πd或C=2πr也就是圆的周长=圆周率×直径。圆的周长有3个应用:1.已知d求C=πd 2.已知r求C,先求d再求C 3.已知C求d d=C÷π 已知C求r 先求d 再求r。
已知d求C:一个圆的直径是5.5分米, 求这个圆的周长,那就用π3.14×直径5.5=17.27dm.
已知r求C:汽车车轮的半径为0.3米,它滚动1圈前进多少米?滚动1000圈前进多少米?它滚动一圈前进多少米?也就是求这个轮子的周长,先求出直径:0.3×2=0.6m,然后求一圈的周长:3.14×0.6=1.884m 最后求出1000圈前进多少米:1.884×1000=1884m。
已知C求d:花坛的的周长是62.8m。你能求出这个圆形花坛的直径吗?周长6.28÷π3.14=d 2m
已知C求r:一个圆的周长是25.12㎝,求这个圆的半径,那么先求这个圆的直径:用周长25.12÷π3.14=d 8㎝ 再求半径:8÷2=4㎝。
这是圆周长的四大典型例题,圆的周长,除以直径是一个固定的数,π是≈3.14的。
还有一种类型的题目:下图是一个一面靠墙,另一面用竹篱笆围成的半圆形养鸡场,这个半圆的直径为6米,篱笆长多少米?这题是求半圆的周长,一面靠墙的就不用算上篱笆,也就是求圆周长的一半,就用直径6m×π3.14=圆的周长 18.84m 再算圆周长的一半:18.84÷2=9.42m。
这就是有趣的圆的周长,圆周长的一半,让数学与生活紧紧地联系在一起,原来数学也是蕴藏着生活的奥秘!
老师就让我们将学具中的圆折一折看看能从中发现什么?我心里奇怪了:圆就是一个圆,有什么好折的呢?原来让我们折圆是为了了解圆的对称啊!
我们又拿出剪刀将一个圆剪了下来,再*均剪成八份。老师让我们想一想如何球出圆的面积来。同学们有的说用π乘、有的说用半径求……大家七嘴八舌,课堂好不热闹。最后老师让我们把剪好的八份*似于扇形的纸片试着拼成一个别的图形。我拼的是一个*似于*行四边形的图形。
随后,我们又分别将圆*均分成了16份、32份,再分别将剪好的小扇形拼成一个多边形。这时候我发现,*均分的数量越多,拼成的图形越接*长方形。
因为:长方形的面积=长×宽
所以:圆的面积=C/2×r=2πr/2×r=πr2
经过了图形的分解再组合,我知道了怎么求圆的面积啦!数学好神奇哟~
“铃铃铃”下课的铃声响了,同学们走出了教室。我和张靖娜,邹诗瑶和杜鑫越在一起玩游戏——异想天开。
我们四个人一人拿出三块纸分别在纸上写出人物,地点,和做的什么事,写完之后把它们捏成一个小球,打乱顺序,分好堆,人物一堆,地点一堆,事情一堆,一人在三堆里拿出一个球,打开并按照人物地点和事情连成一个句子。我先读,郝老师在锅里抓鱼,哈哈哈,我们四个不由得笑出声来,张靖娜读,出雷宇航在电饭锅里洗澡。哈哈哈,有一阵笑声,我插着腰撅着嘴看着张靖娜,扑哧一声笑了。我们又恢复了刚才的状态,这回到邹诗瑶了,她还没等说呢自己先笑上了,我们着急得对邹诗瑶说:快点。邹诗瑶笑眯眯地说:杜鑫越在英语书上摘苹果。杜鑫越边笑边看邹诗瑶,我有那么傻吗。最后一个是杜鑫越:张靖娜在厕所里吃黑芝麻糊。咦呀,我要吐了。哈哈哈愉快地笑声给我们的校园添了几分色彩。
“铃铃铃”上课的铃声响起了我们收拾好东西上了第二节课。
说起圆,你或许会问,这不是数学中要学到的问题吗?怎么写到日记本上了?对。今天写的日记就是数学中的问题,叫做“数学日记”,别急,快与我一起探究数学问题吧。
学好圆的知识,首先要先会画圆。画圆?圆那么圆,可怎么画呢?有的同学说:可以先画一个正方形,从里面画一个圆。还可以用杯子底部的圆形画圆。对,可以用这种方式,但怎样能自己控制圆的大小呢?可以这样做:用一条鞋带或绳子,两边各栓一根笔,其中一边用左手按住,按住的那边相当于圆心,它不能动,右手将拴着笔的另一端伸直,转一圈,就成了。另一种方法,我们可以用圆规来画圆:首先,拿住圆规手柄,把圆规两脚分开,定好距离,其次把带尖的一只脚固定在一个点,第三转动圆规开始画圆,把装有铅笔尖的一只脚旋转一周。注意,画的时候带尖的那头不能动。
学会了画圆,还要知道关于圆的知识点,如:
1、d=2r。
2、直径与半径都有无数条。
3、圆是轴对称图形,它的对称轴有无数条。
4、在同一个圆内,所有的直径、半径都相等。
5、圆的位置是由圆心决定的。
6、半径决定圆的大小。
7、圆心确定了,圆的中心位置就确定了。画圆时,要标清半径r,直径d,还要把圆心o标上。
说了这么多,想必你们应该认识圆,会画圆,知道圆的知识点了吧。圆是一个比较简单的单元,所以答题时,我们一定要认真,不要马虎了。
数学评课稿
所谓评课,是指对课堂教学成败得失及其原因做中肯的分析和评估,并且能够从教育理论的高度对课堂上的教育行为作出正确的解释。下面是小编整理的数学评课稿,欢迎大家阅读。
各位老师上午好,很高兴能有机会就昨天下午的三节课和大家进行交流。首先我要说的是能站在这个讲台授课的教师都不简单。三位教师在科学合理设计导学案、精心制作准备教具、渗透高效课堂理念等方面均做了有益的探索,值得我们学*借鉴。在此谨代表我个人对昨天授课的三位教师表示感谢。感谢他们提供了丰富的学*素材,感谢他们给予我思考的机会!本着相互研讨的目的,下面我分别对昨天下午的三节课谈谈自己的看法,不到之处敬请各位同行批评指正。
第一节冷集毕老师所上的课《24.1.1圆》,总体上能够按照高效课堂的要求,较好的体现了预*、展示和测评(反馈)三大板块,我想从三个方面对本节课谈谈自己的学*体会。简称为“三有”,即有思想、有行动、有突破。首先说有思想,本节课体现了“先学后教”的高效课堂理念,围绕教材让学生分步预*,分步展示,整体反馈,反映教师有比较先进的教育教学思想;其次是有行动,关键是毕老师能把自己的思想转换为实际行动,较好体现肖主任在教研会上反复提到的“书让学生读、结论让学生发现、方法让学生归纳”以学生为主体的教学观;第三是有突破,我们很多老师在尝试高效课堂模式的时候,注重形式化的东西较多,较少体会高效课堂的实质。本节课上毕老师至少在以下两个方面上有所突破,一是预*方法的现场指导,比如要求学生阅读是画记号,小组合作时强调小组长要发挥作用等等,体现了学法指导。而不是让学生自己预*阅读,老师不管不问。二是在教具的制作和演示上匠心独具,特别是用两根铁丝演示等弧的问题,形象直观,便于学生理解。同时学生表现的状态很好,注意力高度集中,我感到这是本节课学生精力流失率最低的环节之一。
当然,从我个人的理解上,也有几个问题提出来和老师们一同商讨。一个是导学案中,新课设计要不要例题的问题,目前我们学校在编写导学案时,一般设计五个环节:复*回顾(或情境引入)—新知探究(预*思考)—拓展应用(合作探究)—巩固练*(反馈矫正)—小结测评(当堂检测)。其中拓展应用环节就是设计两到三个例题,以此体现本节知识的核心应用。处理方式还是先让学生自主探究,再组内交流,最后集中展示(大展示),学生讲解点评。最后教师引导归纳基本方法和解题技巧。本节课我觉得把点P到圆O上各点的距离中,最长的是8,最短的是2,求圆O的半径或直径作为例题教学是不是好一些。第二个是关于圆的集合的定义,在处理时有点快,虽不是本节重点,但是一个难点,学生不易理解,原来导学案中设计有画图,结果教学时好像没有见到,如果能让学生亲自画图观察,在圆上取点,测量该点到圆心的距离或以圆心为端点画长度等于半径的点段,然后进行观察分析就会轻松得到,到定点的距离等于定长的点都在什么什么圆上,圆上各点到定点的距离都等于圆的半径,并由此归纳出圆的集合定义。
第二节石花四中冷老师的课,讲的是垂径定理。导学案的整体设计上没什么大问题,只是“知二推三”的拓展似乎超过课标要求。“知二求三”才是本节核心。另外推论得出上的设计过于简略,导致学生在此处卡壳。如果能细化一点,就可解决这个问题。比如画一条弦CD,取CD的中点M,连接OM,求证:OM⊥CD,如果延长OM、MO分别交圆O于A、B两点,有哪些相等的弧?由此你能发现什么结论吗?其次是具备了高效课堂的某些形式,比如学生自学预*、小组合作讨论等,但不是很深入、不是很细致。整体感觉还是老师讲的多,不过冷老师是老教师,我们同龄,思想和行为转变起来确实很困难,不要心急,只要敢于尝试,大胆放手、相信学生,我们就会在高效课堂的路上走得更好。垂直于弦的直径教师教学用书上建议安排一个课时,实际上,应该是两个课时的.内容,有必要附加一节*题课。
第三节是王老师的旋转试卷讲评课。我也以“三有”为关键词谈谈自己的学*体会。即有创新、有实效、有准备。有创新是指这种试卷讲评的模式让人耳目一新,原来肖主任主持的教研会上也对试卷讲评课做过研讨,而王老师的这节课在糅合高效课堂理念上,有创新。比如先让学生围绕要求自己组内改正,自我纠正、查找错因、组内合作这些有利于学生学*的方式值得学*效仿。有实效,主要体现在错因剖析、变式练*上,从我自己的角度看,我也想这么做,但从来没试过。因为很多学生并不清楚自己错在哪里,让他说,要么说忘记了不知道,要么半天说不到正点,所以每次试卷讲评效果不佳,错了的以后仍然会错。而王老师的这种方法,我觉得真正把原因弄清楚了也算是把问题真正弄明白了。其次是学生疑难点的变式练*,借助多媒体课件增大课堂容量的同时,一方面反馈改正效果,一方面进行有益的拓展延伸,增大思维含量,效果非常好。上好试卷讲评课的关键是教师课前的准备,教师通过批阅试卷必须收集掌握第一手材料,然后备课、制作课件。本节课王老师准备充分,特别是课件制作上,能在第二、三活动前。出示活动要求,方便学生明白做什么,怎么做?需要商榷的是王老师对第17题的讲解似乎不很到位,虽然有学生回答了旋转中心的坐标是(5,2),也说了自己的思路。但不科学,王老师也沿用了这种方法。我个人觉得根据旋转的性质确定旋转中心是先找两对对应点,接着分别作两对应点连线的垂直*分线,最后两中垂线的交点才是旋转中心。其中在网格中的技巧是尽量找是“正方形”顶点的对应点,这样容易看出垂直*分线的位置。
当然对于部分是教师讲的,比如第16题和第20题的变式,我个人是赞赏的,高效课堂并不是不要老师讲,学生普遍感到困难的,老师讲效果并不差,怕就怕老师一讲到底,搞一言堂。新课标中,也提到除接受学*外,动手实践、自主探索与合作交流也是学*数学的重要方式。可见,高效课堂并不排斥接受学*。
总之,三节课反映了老师对高效课堂的不同认识和理解,都值得我慢慢学*细细揣摩,从中汲取营养,改善自己的教学。再一次谢谢大家。
《分式方程》是七下内容,李老师精心设计了知识的呈现过程,创设情景,以旧引新,层层推进,由浅入深,达到很好的教学效果。教学过程中充分鼓励学生自主发现,自我尝试,新课程标准教学理念得到了有效体现。整个课堂气氛轻松、活跃。
符合数学新课标理念,概念引入得比较清晰,注重学生对概念的理解;课堂教学过程流畅,方法得当,把握了课堂节奏,问题层层深入,难点各个击破;强调解题的步骤,注重学生的合作意识的培养,内容扩展适中,语言精练清晰;尊重学生认知过程和个性的差异性;老师精神状态好,充满激情,语言幽默。
绝大多数学生能够掌握知识的脉络关系,对知识具有整体的把握;学生对知识的求知欲望表现的比较强烈,学生有较多的交往互动,学*状态积极活跃。主动参与实践、思考、探索,体现了学*的自主性、参与性。
设计学*问题步步深入,能很好地引导学生在问题面前积极思考,调动同学们参与讨论的热情,课堂气氛活跃。充分体现了学生的学而不是教师的教。语言亲切,富有激励性,思路清晰,铺陈有序,娓娓道来,把握课堂节奏的能力强,坡度设置较好,适合学生接受能力。
数学于生活,又服务于生活,李老师由生活中的实际“顺流、逆流”引出了数学分式方程,然后寻求方法,最后拓展解决复杂的分式方程。整个课堂幽默、风趣,很有亲和力,但也不乏知识性、系统性,让尽可能多的学生参与了学*!学生在轻松、愉快的教学环境中学到了知识,掌握了方法,真正体现了“轻负荷、高质量”的办学理念!
感觉到李老师在关注学生主体性,以问题教学为中心,培养学生探究知识发生的过程,激发学*兴趣,合作交流的良好*惯上值得我学*。体现在:
1、引入新课由已学数字分母的一元一次方程,对比由问题列出的有字母的方程,提出分式方程的概念,对学生更好的理解概念打下铺垫。
2、分式方程解法的教学上,让学生通过小组讨论探索,类比数字分母的一元一次方程的解法,发现分式方程解法,步骤,让学生经历了知识发生的过程。
3、组织学生讨论增根的原因,使学生重视分式方程验根的必要性。
能准确把握教材和学情,由实际问题自然引出分式方程定义,由解一元一次方程类比启发总结出分式方程的解法,课堂安排严谨有序,教师点拨及时到位,特别是在渗透数学思想和指导学法方面值得学*。
符合数学新课标理念;选材上认真细致,精益求精;在情感、态度、价值观上教者对学生进行了很好的渗透;课堂教学过程流畅,方法得当,把握了课堂节奏,问题层层深入,难点各个击破;概念引入得比较清晰,注重学生对概念的理解;强调解题的步骤,注重学**惯的养成教育;注重学生的合作意识的培养,内容扩展适中,调动有方有度有章法,语言精练清晰;尊重学生认知过程和个性的差异性;老师精神状态好,充满激情,语言幽默,有较强的感召力。
学生在老师的引导方向上逐步走进问题的核心,发现探究过程清晰;绝大多数学生能够掌握知识的脉络关系,对知识具有整体的把握;学生对知识的求知欲望表现的比较强烈,学生有较多的交往互动,学*状态积极活跃。主动参与实践、思考、探索,体现了学*的自主性、参与性。学生对知识的掌握程度比较好。教师如果能国家权力大胆地让学生来自主探究,那样可能会更好。
《两位数与两位数相乘》是二期课改教材三年级第二学期中第二单元的一个教学内容,它是在学生能够比较熟练地口算整十、整百数与一位数相乘,并且掌握了用一位数乘两、三位数的基础上进行教学的。
曹xx老师本节课的教学设计力图体现;尊重学生,自主探究,用已有知识解决新问题;的教学理念。教材的设计是注重结合具体情景,强调算法探究,重视对算理的剖析,使学生获得多种算法的体验。在实际教学中,有以下几点做得较成功:
一、引导学生估
教材的编排强调先估后算,从实际的教学情况看,首先学生根据已有经验将一个因数估成相邻的整十数进行估算以及比较哪种估算的值更接*实际得数都不存在争议,同时基于对上半学期估算教学中已经出现了估计积的范围,考虑是不是可以有一个延续,因此在;估一估这一环节中做了适当的调整,将教材中只需估计一个值设计为估计积的范围。这样的处理使估计的结果更具有实用性,学生也更容易理解为什么要估和估了之后有什么用,而不是为估而估,也更体现出教材编排先估后算的意图。
二、设疑让学生想
在自主探究,尝试算法这一环节中,强调要求学生用学过的方法来解决今天的新问题,在给学生足够的独立思考时间后再进行小组讨论,弥补了小组讨论中的一些弊端,使所有的学生都有自主寻找策略的机会。随后的小组讨论,在学生的各抒己见中,各种算法的出现体现了算法的多样化,同时由教师提出的;看看哪个小组想出的方法最多引发了学生的成就感和进取心,更重要的是在小组讨论中,同学之间交流与合作有利于学生的全面发展。
三、组织学生说
在全班交流,汇总算法的环节中,第一次说设计了由学生自己来说每一种算法的过程和选择这种算法的理由;第二次说设计了在学生看书之后说书中四个小朋友的算法并进行分类。
这个环节将重点落在让学生说清分拆的方法和这样分拆的理由上,使学生体会将两位数乘两位数转化为已学过的两位数乘整十数和两位数乘一位数来计算,也就是用已有知识解决新问题的理念。
四、帮助学生悟
在独立尝试,算法优化的环节中,有两组的因数都是质数,也就是都不能分拆为两个一位数相乘的形式。通过这一环节的练*,帮助学生理解将其中一个因数分拆为两数和的形式比较简便,同时进一步理解分拆为一个整十数与一个一位数相加的形式更为简便和具有通用性,同时为下节课学*两位数乘两位数竖式做好铺垫。
五、指导学生用
在应用深化环节中,设计了两组不同形式的练*,帮助学生巩固今天所学知识,判断的第3题和第4题,与第一环节中估一估的知识相呼应,加深学生对于估算意义的理解和用估算解决问题的意识。
本节课为学生提供具体的实践活动,创设引导学生探索、操作和思考的情景。整节课学生是在有目的的进行有效思考,课堂中有独立探究,有合作交流;有估计,有验证;有观察,有分析,有解决问题的策略的优化,力求让学生在探索算法过程中,增强自主探索、合作交流的意识,并产生解决数学问题的积极情感体验。
另作为数字化课堂的实践课,曹老师运用了很多新的技术,让我眼前一亮。如:拍照所要的学生素材等。总之,这是一节好课。
数学的古诗数学的古诗
与数学的古诗
含数学的古诗数学小报
含数学的古诗
《数学和数学家的古诗》
写数学的古诗
数学家关于数学的古诗
有数学的古诗
小学数学古诗文里的数学
数学中圆的古诗
数学的古诗和画
数学数学名言
数学的古诗五言
与数学有关的古诗
数学的诗句
数学诗句
数学古诗的作者
数学思想的古诗
关于一的的数学古诗
古诗与数学的渊源
写数学课的古诗
数学概率的古诗
数学与古诗的美景
数学世界的古诗
有关数学的古诗ppt
有关数学倒数的古诗
数学与古诗的融合
数学概念的古诗
数学与古诗的小报
暗藏数学的古诗
有六行每行七个字的古诗
凤唱鸾吟的古诗
有关腊八节的古诗词大全
写江河水流的古诗词
昭明台春天的古诗
安慰难熬的古诗词
表示克己的古诗
形容欣赏别人作品的古诗
秋天山色的7言古诗
关于柳树的古诗名
红瑞木的古诗词
春夏秋冬的古诗各三个
描写中秋节的古诗词歌赋
描写长江黄河的古诗大全
描写女人发髻的古诗
古诗最酷的十首
水波的古诗词
女人骗男人的古诗
洞箫声音的古诗
教诲养育的古诗词
形容朦胧烟雨的古诗
形容姑娘优秀又美丽的古诗词
谢人送粽古诗的诗意
古诗中比较有意思的意象
五首传统佳节的古诗
表达对未来美好的期望古诗
古诗美人的图片
发挥各自的特长古诗词
有关民俗风情的古诗
活得洒脱的古诗词
夏天形容冬天的古诗